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Abstract
We analyse the renormalizability of the sine-Gordon model using the two-point
causal Green function. We show that all divergences can be removed by the
renormalization of the dimensional coupling constant using the renormalization
constant Z1, calculated in Faber and Ivanov (2003 J. Phys. A: Math. Gen. 36
7839) within the path-integral approach. We calculate the Gell-Mann–Low
function and solve the Callan–Symanzik equation for the two-point Green
function. We analyse the renormalizability of Gaussian fluctuations around
a soliton. We show that Gaussian fluctuations around a soliton solution are
renormalized like quantum fluctuations around the trivial vacuum and do not
introduce any singularity to the sine-Gordon model at β2 = 8π . We calculate
the correction to the soliton mass, caused by Gaussian fluctuations around a
soliton, within the discretization procedure for various boundary conditions and
find complete agreement with our result, obtained in continuous space–time.

PACS numbers: 11.10.Ef, 11.10.Gh, 11.10.Hi, 11.10.Kk

1. Introduction

We describe the sine-Gordon model by the Lagrangian [1, 2]

L(x) = 1

2
∂µϑ(x)∂µϑ(x) +

α0(�
2)

β2
(cos βϑ(x) − 1), (1.1)

where the field ϑ(x) and the coupling constant β are unrenormalizable, α0(�
2) is a dimensional

bare coupling constant and � is an ultra-violet cut-off. As has been shown in [2] the
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coupling constant α0(�
2) is multiplicatively renormalizable, and the renormalized Lagrangian

reads [2]

L(x) = 1

2
∂µϑ(x)∂µϑ(x) +

αr(M
2)

β2
(cos βϑ(x) − 1) + (Z1 − 1)

αr(M
2)

β2
(cos βϑ(x) − 1)

= 1

2
∂µϑ(x)∂µϑ(x) + Z1

αr(M
2)

β2
(cos βϑ(x) − 1), (1.2)

where Z1 = Z1(αr(M
2), β2,M2;�2) is the renormalization constant [2–5] depending on

the normalization scale M. The renormalization constant relates the renormalized coupling
constant αr(M

2), depending on the normalization scale M, to the bare coupling constant
α0(�

2) [2–5]

αr(M
2) = Z−1

1 (αr(M
2), β2,M2;�2)α0(�

2). (1.3)

As has been found in [2] the renormalization constant Z1(αr(M
2), β2,M2;�) is equal to

Z1(αr(M
2), β2,M2;�2) =

(
�2

M2

)β2/8π

. (1.4)

This result is valid to all orders of perturbation theory developed relative to the coupling
constant β2 and α0(�

2) [2]. Since the normalization constant does not depend on αr(M
2), we

write below Z1 = Z1(β
2,M2;�2).

For the analysis of the renormalizability of the sine-Gordon model with respect to quantum
fluctuations around the trivial vacuum, we expand the Lagrangian (1.2) in powers of ϑ(x).
This gives

L(x) = 1
2 [∂µϑ(x)∂µϑ(x) − αr(M

2)ϑ2(x)] + Lint(x), (1.5)

where Lint(x) describes the self-interactions of the sine-Gordon field

Lint(x) = αr(M
2)

∞∑
n=2

(−1)n

(2n)!
β2(n−1)ϑ2n(x) + (Z1 − 1)αr(M

2)

∞∑
n=1

(−1)n

(2n)!
β2(n−1)ϑ2n(x).

(1.6)

It is seen that the coupling constant αr(M
2) has the meaning of a squared mass of free quanta

of the sine-Gordon field ϑ(x). The causal two-point Green function of free sine-Gordon
quanta with mass αr(M

2) is defined by

−i�F (x;αr(M
2)) = 〈0|T(ϑ(x)ϑ(0))|0〉 =

∫
d2k

(2π)2i

e−ik · x

αr(M2) − k2 − i0
. (1.7)

At x = 0 the Green function −i�F (0;αr(M
2)) is equal to [2]

−i�F (0;αr(M
2)) = 1

4π
ln

[
�2

αr(M2)

]
, (1.8)

where � is a cut-off in the Euclidean two-dimensional momentum space [2].
As usual the generic analysis of the renormalizability of a quantum field theory is carried

out in the form of power counting, the concept of the superficial degree ω(G) of divergence of
momentum integrals of the Feynman diagram G based on dimensional considerations [3–5].
Following the standard procedure [3–5] one can show that

ω(G) = 2 − 2
∑
{n}

V2n, (1.9)

where V2n is the number of 2n-vertices of the self-interaction term ϑ2n(x) of the sine-Gordon
field ϑ(x). Relation (1.9) testifies the complete renormalizability of the sine-Gordon model.
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The main aim of this paper is to show that the sine-Gordon model is well defined not only
for β2 < 8π but for 0 � β2 < ∞. An important application of this result is the fractional
quantum Hall effect (the FQHE) [6, 7]. Indeed, as has been pointed out in [6, 7] the FQHE
is defined by the edge tunnelling of quasi-particles and electrons. In the bosonized form the
Hamiltonian of the interaction of quasi-particles and electrons has the form of the sine-Gordon
interaction [6]

Hint(x) = − α

β2
cos βϑ(x). (1.10)

The parameter β2 is defined by [6]

β2 =
{

4πν for tunnelling of quasi-particles

4π/ν for tunnelling of electrons
(1.11)

where ν is the filling factor [8]. If the coupling constant β2 obeys the constraint β2 < 8π , only
quasi-particles can be responsible for the FQHE. The participance of electrons in the FQHE
is prohibited. However, if there is a possibility for the coupling constant β2 to be greater than
8π , i.e. β2 > 8π , the participance of electrons in the FQHE cannot be suppressed. This opens
new possibilities for the dynamics of the FQHE.

The paper is organized as follows. In section 2, we investigate the renormalizability of
the two-point Green function of the sine-Gordon field. Quantum fluctuations are calculated
relative to the trivial vacuum up to second order in αr(M

2) and to all orders in β2. We show that
after renormalization of the two-point Green function to first order in αr(M

2) and to all orders
in β2 all higher order corrections in αr(M

2) and all orders in β2 can be expressed in terms
of αph, the physical dimensional coupling constant independent of the normalization scale M.
We derive the effective Lagrangian of the sine-Gordon model, taking into account quantum
fluctuations to second order in αr(M

2) and to all orders in β2. We show that all divergences can
be removed by the renormalization constant (1.4). The first finite correction to αph is of order
O(αphβ

6) only. It appears to the second order in αr(M
2) and the third order in β2. In section 3,

we analyse the renormalizability of the sine-Gordon model within the renormalization group
approach. We use the Callan–Symanzik equation for the derivation of the total two-point
Green function of the sine-Gordon field in momentum representation. We show that the two-
point Green function depends on the running coupling constant αr(p

2) = αph(p
2/αph)

β̃2/8π ,
where β̃2 = β2/(1 + β2/8π) < 1 for all β2. In section 4, we investigate the renormalizability
of the sine-Gordon model with respect to Gaussian fluctuations around a soliton solution.
We show that Gaussian fluctuations around a soliton solution lead to the same renormalized
Lagrangian of the sine-Gordon model as quantum fluctuations around the trivial vacuum taken
into account to first order in αr(M

2) and β2. In section 5, we discuss the correction to the
soliton mass induced by quantum fluctuations. We show that Gaussian fluctuations around a
soliton solution reproduce the same correction as the quantum fluctuations around the trivial
vacuum, calculated to first orders in αr(M

2) and β2. This correction does not contain the finite
quantum correction obtained by Dashen et al [9, 10] (see also [11]). In section 6, we discuss
the calculation of the correction to the soliton mass �Ms , induced by Gaussian fluctuations,
within a discretization procedure for various boundary conditions. We show that the result
of the calculation of �Ms does not depend on the boundary conditions and agrees fully with
that obtained in continuous space–time. In section 7, we analyse the renormalizability of the
causal two-point Green function in the massive sine-Gordon model and compare our results
with those obtained by Amit et al [12]. In the conclusion, we summarize the obtained results
and discuss them.
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2. Renormalization of causal two-point Green function

The causal two-point Green function of the sine-Gordon field is defined by

−i�(x) = 1

i

δ

δJ (x)

1

i

δ

δJ (0)
Z[J ]J=0, (2.1)

where Z[J ] is a generating functional of Green functions

Z[J ] =
∫

Dϑ exp

{
i
∫

d2y[L(y) + ϑ(y)J (y)]

}

=
∫

Dϑ exp

{
i
∫

d2y

[
1

2
(∂µϑ(y)∂µϑ(y) − αr(M

2)ϑ2(y)) + Lint(y) + ϑ(y)J (y)

]}
,

(2.2)

normalized by Z[0] = 1, J (x) is the external source of the sine-Gordon field ϑ(x).
Substituting (2.2) into (2.1) we get

−i�(x) =
∫

Dϑϑ(x)ϑ(0) exp

{
i
∫

d2yLint(y)

}

× exp

{
i

2

∫
d2y[∂µϑ(y)∂µϑ(y) − αr(M

2)ϑ2(y)]

}
, (2.3)

where Lint(y) is given by (1.6). The rhs of (2.3) can be rewritten in the form of a vacuum
expectation value of a time-ordered product [13]

−i�(x) = 〈0|T
(

ϑ(x)ϑ(0) exp

{
i
∫

d2yLint(y)

})
|0〉c, (2.4)

where the index c means the connected part, ϑ(x) is the free sine-Gordon field operator with
mass αr(M

2) and the causal two-point Green function �F (x, αr(M
2)) defined by (1.7).

In the momentum representation, the two-point Green function (2.4) reads

−i�̃(p) = −i
∫

d2x e+ip · x�(x)

=
∫

d2x e+ip · x〈0|T
(

ϑ(x)ϑ(0) exp

{
i
∫

d2yLint(y)

})
|0〉c. (2.5)

For the analysis of the renormalizability of the sine-Gordon model, we propose to calculate the
corrections to the two-point Green function (2.4) (or to (2.5)), induced by quantum fluctuations
around the trivial vacuum. Expanding the rhs of equation (2.4) in powers of αr(M

2) and β2

we determine

−i�(x) =
∞∑

m=0

(−i)�(m)(x, αr(M
2)), (2.6)

where (−i)�(m)(x, αr(M
2)) is defined by

−i�(m)(x, αr(M
2)) = im

m!

∫
· · ·
∫

d2y1 · · · d2ym〈0|T(ϑ(x)ϑ(0)Lint(y1) · · ·Lint(ym))|0〉c.
(2.7)

The Green function (−i)�(0)(x, αr(M
2)) coincides with the Green function (1.7) of the free

sine-Gordon field.
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In the momentum representation, the correction to the two-point Green function
(−i)�(m)(x, αr(M

2)) can be written as

−i�̃(m)(p, αr(M
2)) =

∫
d2x e+ip · x(−i)�(m)(x, αr(M

2)) = im

m!

∫
d2x e+ip · x

×
∫

· · ·
∫

d2y1 · · · d2ym〈0|T(ϑ(x)ϑ(0)Lint(y1) · · ·Lint(ym))|0〉c. (2.8)

Now let us proceed to the analysis of the perturbative corrections to the two-point Green
function.

2.1. Two-point Green function to first order in αr(M
2) and to all orders in β2

The correction to the two-point Green function to first order in αr(M
2) and to all orders in β2

is defined by

−i�(1)(x, αr(M
2)) = i

∫
d2y1〈0|T(ϑ(x)ϑ(0)Lint(y1))|0〉c

= iαr(M
2)

∞∑
n=2

(−1)n

(2n)!
β2(n−1)

∫
d2y〈0|T(ϑ(x)ϑ(0)ϑ2n(y))|0〉c

+ iαr(M
2)(Z1 − 1)

∞∑
n=1

(−1)n

(2n)!
β2(n−1)

∫
d2y〈0|T(ϑ(x)ϑ(0)ϑ2n(y))|0〉c. (2.9)

Making all contractions we arrive at the expression

−i�(1)(x, αr(M
2)) = iαr(M

2)

[
1 − Z1 exp

{
1

2
β2i�F (0, αr(M

2))

}]

×
∫

d2y[−i�F (x − y, αr(M
2))][−i�F (−y, αr(M

2))]. (2.10)

Using the normalization constant Z1, given by (1.4), and definition (1.8) of the two-point
Green function we remove the cut-off �

−i�(1)(x, αr(M
2)) = iαr(M

2)

[
1 −

(
αr(M

2)

M2

)β2/8π
]

×
∫

d2y[−i�F (x − y, αr(M
2))][−i�F (−y, αr(M

2))]. (2.11)

Thus, the renormalized causal two-point Green function of the sine-Gordon field, defined to
first order in αr(M

2) and to all orders in β2, is given by

−i�(x) = −i�F (x, αr(M
2)) + iαr(M

2)

[
1 −

(
αr(M

2)

M2

)β2/8π
]

×
∫

d2y[−i�F (x − y, αr(M
2))][−i�F (−y, αr(M

2))]. (2.12)

In the momentum representation, the two-point Green function (2.12) reads

−i�̃(p) = (−i)

αr(M2) − p2
+

(−i)

αr(M2) − p2
iαr(M

2)

[
1 −

(
αr(M

2)

M2

)β2/8π
]

(−i)

αr(M2) − p2
.

(2.13)
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The second term defines the correction to the mass of the sine-Gordon field

δαr(M
2) = −αr(M

2)

[
1 −

(
αr(M

2)

M2

)β2/8π
]

. (2.14)

Thus, the two-point Green function, calculated to first order in αr(M
2) and to all orders in β2,

is equal to

−i�̃(p) = (−i)

αr(M2) + δαr(M2) − p2
= (−i)

αph − p2
, (2.15)

where αph is determined by

αph = αr(M
2) + δαr(M

2) = αr(M
2)

(
αr(M

2)

M2

)β2/8π

. (2.16)

This gives also αr(M
2) in term of M and αph

αr(M
2) = αph

(
M2

αph

)β̃2/8π

, β̃2 = β2

1 +
β2

8π

. (2.17)

The Green function (2.15) can be obtained to leading order in β2 from the Lagrangian

Leff(x) = 1

2
∂µϑ(x)∂µϑ(x) +

αr(M
2)

β2

(
αr(M

2)

M2

)β2/8π

(cos βϑ(x) − 1)

= 1

2
∂µϑ(x)∂µϑ(x) +

αph

β2
(cos βϑ(x) − 1). (2.18)

We argue that higher order corrections to the two-point Green function in αr(M
2) and to all

orders in β2 should depend on the physical coupling constant αph only

−i�(m)(x, αr(M
2)) = im

m!

∫
· · ·
∫

d2y1 · · · d2ym〈0|T(ϑ(x)ϑ(0)Lint(y1) · · ·Lint(ym))|0〉c
= −i�(m)(x, αph) (for m � 2). (2.19)

In order to prove this assertion it is sufficient to analyse the renormalization of the causal
two-point Green function to second order in αr(M

2) and to all orders in β2.

2.2. Two-point Green function to second order in αr(M
2) and to all orders in β2

The correction to the two-point Green function to second order in αr(M
2) and to all orders in

β2 is defined by

−i�(2)(x, αr(M
2)) = −1

2

∫∫
d2y1d2y2〈0|T(ϑ(x)ϑ(0)Lint(y1)Lint(y2))|0〉c. (2.20)

After the extraction of the contributions corresponding to the second order of the expansion
of the geometric series, the non-trivial contribution is

−i�(2)(x, αr(M
2)) =

[
αr(M

2)Z1 exp

{
β2

2
i�F (0, αr(M

2))

}]2
1

β2

∫∫
d2y1 d2y2

× [−i�F (x − y1, αr(M
2))]

(
cosh[−β2i�F (y1 − y2, αr(M

2))] − 1

− 1

2
β4[−i�F (y1 − y2, αr(M

2))]2

)
[−i�F (y1, αr(M

2))]
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−
[
αr(M

2)Z1 exp

{
β2

2
i�F (0, αr(M

2))

}]2

× 1

β2

∫∫
d2y1 d2y2[−i�F (x − y1, αr(M

2))](sinh[−β2i�F (y1 − y2, αr(M
2))]

−β2[−i�F (y1 − y2, αr(M
2))])[−i�F (y2, αr(M

2))]. (2.21)

Since the coupling constant αr(M
2) can be replaced everywhere by αph by means of the

renormalization constant Z1 (1.4), in the momentum representation the correction to the
two-point Green function to second order in αph takes the form

−i�̃(2)(p, αr(M
2)) = iα2

ph

[
(−i)

αph − p2

]2

×
{ ∞∑

n=2

β4n−4

(2n − 1)!

∫
d2q1

(2π)2i

1

αph − q2
1

∫
d2q2

(2π)2i

1

αph − q2
2

· · ·

×
∫

d2q2n−2

(2π)2i

1

αph − q2
2n−2

1

αph − (p − q1 − q2 − · · · − q2n−2)2

−
∞∑

n=2

β4n−2

(2n)!

∫
d2q1

(2π)2i

1

αph − q2
1

∫
d2q2

(2π)2i

1

αph − q2
2

· · ·

×
∫

d2q2n−1

(2π)2i

1

αph − q2
2n−1

1

αph − (q1 + q2 + · · · + q2n−1)2

}
= −i�̃(2)(p, αph).

(2.22)

This proves relation (2.19) to second order in αr(M
2) and to all orders in β2. The proof of

relation (2.19) to arbitrary orders in αr(M
2) and β2 runs in the same way.

The even-order corrections in β2, i.e. O
(
α2

ph(β
2)2n−2

)
, introduce a non-trivial momentum

dependence of the two-point Green function, whereas the odd-order corrections in β2, i.e.
O
(
α2

ph(β
2)2n−1

)
, do not depend on the momentum p. They contribute to the effective coupling

constant αeff = αphf (β2), where f (β2) = O(β6).

2.3. Physical renormalization of the sine-Gordon model

Thus, using the results obtained above we can formulate a procedure for the renormalization
of the sine-Gordon model dealing with physical parameters only. Starting with the Lagrangian
(1.1) and making a renormalization at the normalization scale M2 = αph we deal with physical
parameters only

αph = Z−1
1 (β2, αph;�2)α0(�

2) = α0(�
2)
(αph

�2

)β2/8π

. (2.23)

The renormalized Lagrangian is defined by

L(x) = 1

2
∂µϑ(x)∂µϑ(x) +

αph

β2
(cos βϑ(x) − 1) + (Z1 − 1)

αph

β2
(cos βϑ(x) − 1) (2.24)

with the renormalization constant Z1(β
2, αph;�2) = (�2/αph)

β2/8π . From relation (2.17) at
M2 = αph one can obtain that αr(αph) = αph. The calculation of perturbative corrections to
the two-point Green function of the sine-Gordon model shows that the first-order correction
in αph vanishes in accordance with equation (2.14). Non-trivial corrections appear only to
second and higher orders in αph.
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One can also show that the results obtained within the physical renormalization of the
sine-Gordon model can be fully reproduced by using the normal-ordered Lagrangian

L(x) = 1

2
: ∂µϑ(x)∂µϑ(x) : +

αph

β2
: (cos βϑ(x) − 1) : . (2.25)

In this case all corrections to the two-point Green function are expressed in terms of αph and
finite.

3. Renormalization group analysis

In this section, we discuss the renormalization group approach [3–5] to the renormalization
of the sine-Gordon model. We apply the Callan–Symanzik equation to the analysis of the
Fourier transform of the two-point Green function of the sine-Gordon field.

The Callan–Symanzik equation for the Fourier transform of the two-point Green function
of the sine-Gordon field (2.5), which we denote below as −i�̃(p;αr(M

2), β2), is equal to [3][
−p · ∂

∂p
+ β(αr(M

2), β2)
∂

∂αr(M2)
− 2

]
�̃(p;αr(M

2), β2) = F(0, p;αr(M
2), β2), (3.1)

where β(αr(M
2), β2) is the Gell-Mann–Low function

M
∂αr(M

2)

∂M
= β(αr(M

2), β2). (3.2)

The term γ (αr(M
2), β2), describing an anomalous dimension of the sine-Gordon field, is

equal to zero [3]. The rhs of (3.1) is defined by

F(0, p;αr(M
2), β2) =

∫∫
d2x d2y e+ip · x〈0|T(�µ

µ(y)ϑ(x)ϑ(0) ei
∫

d2yLint(y))|0〉c,
(3.3)

where Lint(y) is equal to [2]

Lint(y) = α0

β2
(cos βϑ(x) − 1). (3.4)

Then, �µ
µ(y) is the trace of the energy–momentum tensor �µν(x). For a (pseudo)scalar field

ϑ(x), described by the Lagrangian L(x), it is defined by [3]

�µν(x) = ∂L(x)

∂µϑ(x)
∂νϑ(x) − gµνL(x). (3.5)

Using the Lagrange equation of motion one can show that

∂µ�µν(x) = 0. (3.6)

For the sine-Gordon model, the energy–momentum tensor �µν(x) reads

�µν(x) = ∂µϑ(x)∂νϑ(x) − gµν

[
1

2
∂λϑ(x)∂λϑ(x) +

α0

β2
(cos βϑ(x) − 1)

]
. (3.7)

The trace of the energy–momentum tensor �µν(x) is equal to

�µ
µ(x) = −2α0

β2
(cos βϑ(x) − 1) = 2V [ϑ(x)], (3.8)

where V [ϑ(x)] is the potential density functional of the sine-Gordon field ϑ(x).
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Since the trace of the energy–momentum tensor is proportional to the potential energy
density, the Fourier transform F(0, p;αr(M

2), β2) can be related to the two-point Green
function as

F(0, p;αr(M
2), β2) = 2αr(M

2)
∂

∂αr(M2)
�̃(p;αr(M

2), β2), (3.9)

where we have used the definition of the trace �µ
µ(y) of the energy–momentum tensor

equation (3.8) and the relation α0 = αr(M
2)Z1(β

2,M2;�2).
Substituting (3.9) into (3.1) we arrive at the Callan–Symanzik equation for the Fourier

transform of the two-point Green function of the sine-Gordon field[
−p2 ∂

∂p2
+

(
1

2
β(αr(M

2), β2) − αr(M
2)

)
∂

∂αr(M2)
− 1

]
�̃(p2;αr(M

2), β2) = 0, (3.10)

where we have taken into account that �̃(p;αr(M
2), β2) should depend on p2 due to Lorentz

covariance.
For the solution of (3.10) we have to determine the Gell-Mann–Low function (3.2). For

the coupling constant αr(M
2), defined by (2.17), the Gell-Mann–Low function is

β(αr(M
2), β2) = β̃2

4π
αr(M

2), (3.11)

where β̃2 = β2/(1 + β2/8π) (2.17). This gives the Callan–Symanzik equation[
p2 ∂

∂p2
+

(
1 − β̃2

8π

)
αr(M

2)
∂

∂αr(M2)
+ 1

]
�̃(p2;αr(M

2), β2) = 0. (3.12)

Setting �̃(p2;αr(M
2), β2) = D(p2;αr(M

2), β2)/p2 we get[
p2 ∂

∂p2
+

(
1 − β̃2

8π

)
αr(M

2)
∂

∂αr(M2)

]
D(p2;αr(M

2), β2) = 0. (3.13)

Due to dimensional consideration the function D(p2;αr(M
2), β2) should be dimensionless,

depending on the dimensionless variables p̃2 = p2/M2 and α̃ = αr(M
2)/M2, where M is a

normalization scale. This gives[
p̃2 ∂

∂p̃2
+

(
1 − β̃2

8π

)
α̃

∂

∂α̃

]
D(p̃2; α̃, β2) = 0. (3.14)

According to the general theory of partial differential equations of first order [15], the solution
of (3.14) is an arbitrary function of the integration constant

C = α̃

p̃2
(p̃2)β̃

2/8π , (3.15)

which is the solution of the characteristic differential equation(
1 − β̃2

8π

)
dp̃2

p̃2
= dα̃

α̃
. (3.16)

Hence, the Fourier transform of the two-point Green function of the sine-Gordon field is equal
to

�̃(p2;αr(M
2), β2) = 1

p2
D

[
αr(M

2)

p2

(
p2

M2

)β̃2/8π
]

. (3.17)

The argument of the D-function can be expressed in terms of the running coupling constant
αr(p

2)

αr(p
2) = αr(M

2)

(
p2

M2

)β̃2/8π

= αph

(
M2

αph

)β̃2/8π (
p2

M2

)β̃2/8π

= αph

(
p2

αph

)β̃2/8π

. (3.18)
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The solution of the Callan–Symanzik equation for the Fourier transform of the two-point
Green function of the sine-Gordon field is

�̃(p2;αph, β
2) = 1

p2
D

[
αr(p

2)

p2

]
. (3.19)

This proves that the total renormalized two-point Green function of the sine-Gordon field
depends on the physical coupling constant αph only.

4. Renormalization of Gaussian fluctuations around solitons

We apply the renormalization procedure expounded above to the calculation of the contribution
of quantum fluctuations around a soliton solution. We start with the partition function

ZSG =
∫

Dϑ exp

{
i
∫

d2x

[
1

2
∂µϑ(x)∂µϑ(x) +

α0

β2
(cos βϑ(x) − 1)

]}

=
∫

Dϑ exp

{
i
∫

d2xL[ϑ(x)]

}
. (4.1)

Following Dashen et al [9, 10] (see also [16]) we treat the quantum fluctuations of the sine-
Gordon field ϑ(x) around the classical solution ϑ(x) = ϑc�(x) + ϕ(x), where ϕ(x) is the field
fluctuating around ϑc�(x), the single soliton solution of the classical equation of motion

� ϑc�(x) +
α0

β
sin βϑc�(x) = 0 (4.2)

equal to [9, 11, 16]

ϑc�(x) = 4

β
arctan(exp(

√
α0γ (x1 − ux0)) = 4

β
arctan(exp(

√
α0σ)), (4.3)

where u is the velocity of the soliton, σ = γ (x1 − ux0) and γ = 1/
√

1 − u2.2

Substituting ϑ(x) = ϑc�(x) + ϕ(x) into the exponent of the integrand of (4.1), using the
equation of motion for the soliton solution ϑc�(x), and dealing with Gaussian fluctuations only
[9, 10], we transcribe the partition function (4.1) into the form

ZSG = exp

{
i
∫

d2xL[ϑc�(x)]

}∫
Dϕ exp

{
−i

1

2

∫
dτ dσϕ(τ, σ )

×
[
� + α0 − 2α0

cosh2(
√

α0σ)

]
ϕ(τ, σ )

}
. (4.4)

It is seen that
√

α0 has the distinct meaning of the mass of the quanta of the Klein–Gordon
field ϕ(τ, σ ) coupled to an external force described by a scalar potential3.

Integrating over the fluctuating field ϕ(τ, σ ), we transcribe the rhs of (4.4) into the form

ZSG = exp

{
i
∫

d2xL[ϑc�(x)] + iδS[ϑc�]

}
. (4.5)

2 In analogy with the ‘spatial’ variable σ we can define the ‘time’ variable for the soliton moving with velocity u
as τ = γ (x0 − ux1). In variables (τ, σ ) an infinitesimal element of the two-dimensional volume d2x is equal to
d2x = dτdσ and the d’Alembert operator � is defined by � = ∂2/∂τ 2 − ∂2/∂σ 2.
3 The parameter α0 should enter with the imaginary correction α0 → α0 − i0. This is required by the convergence
of the path integral [18].
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We have denoted

exp{iδS[ϑc�]} = exp{i
∫

d2xδLeff[ϑc�(x)]} =
√√√√√√

Det(� + α0)

Det

(
� + α0 − 2α0

cosh2(
√

α0σ)

)

= exp

{
−1

2

∑
n

ln λn +
1

2

∫
d2x

∫
d2p

(2π)2
ln(α0 − p2)

}
, (4.6)

where p is a (1 + 1)-dimensional momentum. The second term in the exponent corresponds
to the subtraction of the vacuum contribution. The effective action, caused by fluctuations
around a soliton solution, is defined by

δS[ϑ] =
∫

d2xδLeff[ϑc�(x)] = i
1

2

∑
n

ln λn +
1

2

∫
d2x

∫
d2p

(2π)2i
ln(α0 − p2), (4.7)

where λn are the eigenvalues of the equation(
� + α0 − 2α0

cosh2(
√

α0σ)

)
ϕn(τ, σ ) = λnϕn(τ, σ ) (4.8)

and ϕn(τ, σ ) are eigenfunctions. The quantum number n can be both discrete and continuous.
This implies that the sum over n in (4.6) should contain both the summation over the discrete
values of the quantum number n and integration over the continuous ones.

According to the Fourier method [17], the solution of equation (4.8) should be taken in
the form

ϕn(τ, σ ) = e−iωτψn(σ ), (4.9)

where −∞ � ω � +∞ and ψn(σ) is a complex function4.
Substituting (4.9) into (4.8) we get(

d2

dσ 2
+ k2 +

2α0

cosh2(
√

α0σ)

)
ψn(τ, σ ) = 0, (4.10)

where we have denoted

k2 = λn + ω2 − α0. (4.11)

This defines eigenvalues λn as functions of ω and k

λn = α0 − ω2 + k2. (4.12)

The parameter k has the meaning of a spatial momentum −∞ < k < +∞. The solutions of
equation (4.10) are5

ψb(σ ) =
√√

α0

2

1

cosh(
√

α0σ)
, ψk(σ ) = i√

2π

−ik +
√

α0 tanh(
√

α0σ)√
k2 + α0

e+ikσ , (4.13)

where the eigenfunction ψb(σ ) has eigenvalues λn = −ω2 and the eigenfunctions ψk(σ ) have
eigenvalues λn = α0 − ω2 + k2. In the asymptotic region σ → ∞ the function ψk(σ ) behaves
as

ψk(σ ) → 1√
2π

e+ikσ+i 1
2 δ(k), (4.14)

4 Since ϕn(τ, σ ) is a real field, we have to take the real part of the solution (4.9) only, i.e. ϕ(τ, σ ) = Re(e−iωτ ψ(σ)).
Though without loss of generality, one can also use complex eigenfunctions [10, 11, 16].
5 The solutions of equation (4.10) are well known [16] (see also [10, 11].
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where δ(k) is a phase shift defined by [16]

δ(k) = 2 arctan
√

α0

k
. (4.15)

The solutions (4.13) satisfy the completeness condition [16]∫ +∞

−∞
dkψ∗

k (σ ′)ψk(σ ) + ψb(σ
′)ψb(σ ) = δ(σ ′ − σ). (4.16)

The fluctuating field ϕ(τ, σ ) is equal to

ϕωb(τ, σ ) = 1√
2π

e−iωτψb(σ ) = 1√
2π

√√
α0

2

1

cosh(
√

α0σ)
e−iωτ ,

ϕωk(τ, σ ) = 1√
2π

e−iωτψk(σ ) = i

2π

−ik +
√

α0 tanh(
√

α0σ)√
k2 + α0

e−iωτ+ikσ .

(4.17)

In terms of the eigenvalues λn = −ω2 and λn = α0 − ω2 + k2 and eigenfunctions (4.17) the
effective action δS[ϑc�] is determined by

δS[ϑc�] = −1

2

∫
d2x

∫ +∞

−∞

dω

2π i

∫ +∞

−∞
dk|ψk(x)|2 ln(α0 − ω2 + k2)

− 1

2

∫
d2x

∫ +∞

−∞

dω

2π i
|ψb(x)|2 ln(−ω2) +

1

2

∫
d2x

∫
d2p

(2π)2i
ln(α0 − p2). (4.18)

Using the explicit expressions for the eigenfunctions ψk(x) and ψb(x) we reduce the rhs of
(4.18) to the form

δS[ϑc�] = −1

2

∫
d2x

∫ +∞

−∞

dω

2π i

∫ +∞

−∞

dk

2π

k2 + α0 tanh2(
√

α0σ)

k2 + α0
ln(α0 − ω2 + k2)

− 1

2

∫
d2x

∫ +∞

−∞

dω

2π i

√
α0

2

1

cosh2(
√

α0σ)
ln(−ω2) +

1

2

∫
d2x

∫
d2p

(2π)2i
ln(α0 − p2).

(4.19)

Introducing the notation

1

cosh2(
√

α0σ)
= 1

2
(1 − cos βϑc�(x)) = β2

2α0
V [ϑc�(x)] (4.20)

we obtain the effective Lagrangian δLeff[ϑc�(x)]. It is equal to6

δLeff[ϑc�(x)] = −1

4
β2V [ϑc�(x)]

∫ +∞

−∞

dω

2π i

∫ +∞

−∞

dk

2π

1

k2 + α0
[ln(−ω2) − ln(α0 − ω2 + k2)]

−1

2

∫ +∞

−∞

dω

2π i

∫ +∞

−∞

dk

2π
ln(α0 − ω2 + k2) +

1

2

∫
d2p

(2π)2i
ln(α0 − p2). (4.21)

The two last terms cancel each other. This gives

δLeff[ϑc�(x)] = −1

4
β2V [ϑc�(x)]

∫ +∞

−∞

dω

2π i

∫ +∞

−∞

dk

2π

1

k2 + α0
[ln(−ω2) − ln(α0 − ω2 + k2)].

(4.22)

6 In the contribution of the mode λn = −ω2 we have used the integral representation

1

2
√

α0
=
∫ +∞

−∞
dk

2π

1

k2 + α0
.
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After the integration by parts over ω the effective Lagrangian δLeff[ϑc�(x)] is defined by

δLeff[ϑc�(x)] = 1

2
β2V [ϑc�(x)]

∫ +∞

−∞

dk

2π

∫ +∞

−∞

dω

2πi

1

α0 − ω2 + k2 − i0
. (4.23)

The appearance of the imaginary correction −i0 is caused by the convergence of the path
integral (4.4) [18].

Integrating over ω we reduce the rhs of (4.23) to the form

δLeff[ϑc�(x)] = 1

2
β2V [ϑc�(x)]

∫ +∞

−∞

dk

4π

1√
α0 + k2

= − β2

4
√

α0
V [ϑc�(x)]

∫ +∞

−∞

dk

4π

√
α0 + k2

dδ(k)

dk
, (4.24)

where δ(k) is a phase shift defined in equation (4.15). We discuss this expression in section 7
in connection with the correction to the soliton mass caused by Gaussian fluctuations.

For the analysis of the renormalizability of the sine-Gordon model, the momentum integral
in the effective Lagrangian δLeff[ϑc�(x)] should be taken in a Lorentz covariant form (4.23)
and regularized in a covariant way. Making a Wick rotation ω → iω and passing to Euclidean
momentum space, we define the integral over ω and k in (4.23) as [2]∫ +∞

−∞

dk

2π

∫ +∞

−∞

dω

2π i

1

α0 − ω2 + k2 − i0
= 1

4π
ln

(
�2

α0

)
, (4.25)

where � is an Euclidean cut-off [2]. The effective Lagrangian, induced by Gaussian
fluctuations around a soliton solution, is equal to

δLeff[ϑc�(x)] = α0

β2

[
− β2

8π
ln

(
�2

α0

)]
(cos βϑc�(x) − 1). (4.26)

The Lagrangian (4.26) has the distinct form of the correction, caused by quantum fluctuations
around the trivial vacuum calculated to first orders in α0(�

2) and β2.
The total Lagrangian, accounting for Gaussian fluctuations around the soliton solution,

amounts to

Leff(x) = 1

2
∂µϑc�(x)∂µϑc�(x) +

α0

β2

[
1 − β2

8π
ln

(
�2

α0

)]
(cos βϑc�(x) − 1). (4.27)

This coincides with equation (6.7) of [2].
As has been shown in [2], the dependence of the effective Lagrangian (4.27) on the cut-off

� can be removed by renormalization with the renormalization constant (1.4)

α0

[
1 − β2

8π
ln

(
�2

α0

)]
= αr(M

2)Z1

[
1 − β2

8π
ln

(
�2

αr(M2)Z1

)]

= αr(M
2)

[
1 +

β2

8π
ln

(
�2

M2

)
− β2

8π
ln

(
�2

αr(M2)

)]

= αr(M
2)

[
1 +

β2

8π
ln

(
αr(M

2)

M2

)]
, (4.28)

where we have kept terms of order O(β2) in the β2-expansion of the renormalization constant
(1.4). This gives the effective Lagrangian

Leff(x) = 1

2
∂µϑc�(x)∂µϑc�(x) +

αr(M
2)

β2

[
1 +

β2

8π
ln

(
αr(M

2)

M2

)]
(cos βϑc�(x) − 1). (4.29)
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We can replace the coupling constant αr(M
2) by the physical coupling constant αph, related

to αr(M
2) by (2.16)

αph = αr(M
2)

[
1 +

β2

8π
ln

(
αr(M

2)

M2

)]
, (4.30)

where we have kept terms of order O(β2) only. Substituting (4.30) into (4.29) we get

L(r)
eff (x) = 1

2
∂µϑc�(x)∂µϑc�(x) +

αph

β2
(cos βϑc�(x) − 1). (4.31)

The effective Lagrangian (4.31) coincides with the Lagrangian, renormalized by the quantum
fluctuations around the trivial vacuum (2.18), and corroborates the result obtained in [2].

We would like to emphasize that analysing the renormalization of the sine-Gordon model,
caused by Gaussian fluctuations around a soliton, one can see that Gaussian fluctuations
are perturbative fluctuations of order O(αr(M

2)β2) valid for β2 � 8π , which cannot be
responsible for non-perturbative contributions to the soliton mass at β2 = 8π .

5. Renormalization of the soliton mass by Gaussian fluctuations in continuous
space–time

Using the effective Lagrangian equation (4.24) one can calculate the soliton mass corrected
by quantum fluctuations. It reads

Ms = 8
√

α0

β2
+ �Ms, (5.1)

where �Ms is defined by

�Ms = −
∫ +∞

−∞
dx1 δLeff[ϑc�(x

1)] =
∫ +∞

−∞

dk

4π

√
α0 + k2

dδ(k)

dk
. (5.2)

This corresponds to the correction to the soliton mass, induced by Gaussian fluctuations,
without a surface term −√

α0/π [19, 20].
In the Lorentz covariant form the correction to the soliton mass reads

�Ms = −
∫ +∞

−∞
dx1 δLeff[ϑc�(x

1)]

=
∫ +∞

−∞

dω

2π i

∫ +∞

−∞

dk

2π

√
α0

k2 + α0
[ln(−ω2) − ln(α0 − ω2 + k2)]

= −2
√

α0

∫ +∞

−∞

dk

2π

∫ +∞

−∞

dω

2π i

1

α0 − ω2 + k2 − i0
, (5.3)

where we have taken the effective Lagrangian defined by (4.22) and integrated over ω by parts.
Using the result of the calculation of the integral (4.25) we get the following expression for
the soliton mass corrected by Gaussian fluctuations

Ms = 8
√

α0(�2)

β2
−
√

α0(�2)

2π
ln

[
�2

α0(�2)

]
. (5.4)
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The removal of the dependence on the cut-off � should be carried out within the
renormalization procedure.

Replacing α0(�
2) in (5.4) by αr(M

2)Z1(β
2,M2;�2), where the renormalization constant

Z1(β
2,M2;�2) is defined by equation (1.4), we get

Ms = 8
√

αr(M2)Z1

β2
−
√

αr(M2)Z1

2π
ln

[
�2

αr(M2)Z1

]
. (5.5)

The renormalization constant Z1 should be expanded in power of β2 to order O(β2). This
gives

Z1 = 1 +
β2

8π
ln

(
�2

M2

)
. (5.6)

Substituting (5.6) into (5.5) and keeping only the leading terms in β2 we get

Ms = 8

β2

√
αr(M2)

[
1 +

β2

8π
ln

(
αr(M2)

M2

)]
. (5.7)

Using equation (4.30) we can rewrite the rhs of (5.7) in terms of αph

Ms = 8
√

αph

β2
. (5.8)

The mass of a soliton Ms depends on the physical coupling constant αph. Hence, the
contribution of Gaussian fluctuations around a soliton solution is absorbed by the renormalized
coupling constant αph and no singularities of the sine-Gordon model appear at β2 = 8π .

This result confirms the assertion by Zamolodchikov and Zamolodchikov [14], that the
singularity of the sine-Gordon model induced by the finite correction −√

αph/π to the soliton
mass, caused by Gaussian fluctuations around a soliton solution, is completely due to the
regularization and renormalization procedure. This has been corroborated in [2].

We have obtained that the soliton mass Ms does not depend on the normalization scale
M. This testifies that the soliton mass Ms is an observable quantity.

6. Renormalization of soliton mass by Gaussian fluctuations: space–time
discretization technique

Usually the correction to the soliton mass is investigated in the literature by a discretization
procedure [19] (see also [20]). The soliton with Gaussian fluctuations is embedded into a
spatial box with a finite volume L and various boundary conditions for Gaussian fluctuations
at x = ±L/2. In such a discretization approach time is also discrete with a period
T, which finally has to be taken in the limit T → ∞. The frequency spectrum is
ωm = 2πm/T with m = 0,±1, . . . . For various boundary conditions spectra of the momenta
of Gaussian fluctuations around a soliton and of Klein–Gordon quanta, corresponding to
vacuum fluctuations, are adduced in table 1. According to table 1, for various boundary
conditions the corrections to the soliton mass are given by

�M(p)
s = lim

T →∞
lim

L→∞
1

2iT

{
2

∞∑
m=−∞

∞∑
n=1

[
ln
(
α0 − ω2

m + k2
n

)− ln
(
α0 − ω2

m + q2
n

)]

+
∞∑

m=−∞

[
ln
(−ω2

m + �2(L)
)− ln

(
α0 − ω2

m

)]}
,
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Table 1. The spectra of the momenta of Gaussian fluctuations around a soliton and the Klein–
Gordon quanta. The modes, denoted by (∗) are due to the bound state.

Periodic BC
Soliton sector Vacuum sector
knL + δ(kn) = 2nπ qnL = 2nπ

n = 0 : (∗) ← 1× → n = 0 : q0 = 0
n = 1 : q1 = π

L
+ O(L−2) ← 2× → n = 1 : q1 = 2π

L

· · · ← 2× → · · ·∑∞
n=1 → ∫∞

π
L

+O(L−2)
dk
2π

(
L + dδ(k)

dk

) ∑∞
n=1 → ∫∞

2π
L

dq
2π

L

Anti-periodic BC
knL + δ(kn) = (2n − 1)π qnL = (2n − 1)π

n = 1 : (∗) + k1 = 0 ← (1 + 1)× → n = 1 : q1 = π
L

· · · ← 2× → · · ·∑∞
n=2 → ∫∞

2π
L

+O(L−2)
dk
2π

(
L + dδ(k)

dk

) ∑∞
n=2 → ∫∞

3π
L

dq
2π

L

Rigid walls
knL + δ(kn) = nπ qnL = nπ

n = 1 : (∗) ← 1× → n = 1 : q1 = π
L

· · · ← 1× → · · ·∑∞
n=2 → ∫∞

π
L

+O(L−2)
dk
π

(
L + dδ(k)

dk

) ∑∞
n=2 → ∫∞

2π
L

dq
π

L

�M(ap)
s = lim

T →∞
lim

L→∞
1

2iT

{
2

∞∑
m=−∞

∞∑
n=2

[
ln
(
α0 − ω2

m + k2
n

)− ln
(
α0 − ω2

m + q2
n

)]

+
∞∑

m=−∞

[
ln
(−ω2

m + �2(L)
)

+ ln
(
α0 − ω2

m

)− 2 ln
(
α0 − ω2

m + q2
1

)]}
,

�M(rw)
s = lim

T →∞
lim

L→∞
1

2iT

{ ∞∑
m=−∞

∞∑
n=2

[
ln
(
α0 − ω2

m + k2
n

)− ln
(
α0 − ω2

m + q2
n

)]

+
∞∑

m=−∞

[
ln
(−ω2

m + �2(L)
)− ln

(
α0 − ω2

m + q2
1

)]}
, (6.1)

where �2(L) ∼ α0 e−√
α0L at L → ∞, and the abbreviations (p), (ap) and (rw) mean periodic,

anti-periodic boundary conditions and rigid walls, respectively.
For the summation over m, we use the formula, derived by Dolan and Jackiw [21]

+∞∑
m=−∞

[
ln
(−ω2

m + a2
)− ln

(−ω2
m + b2

)] = i(a − b)T + 2 ln

(
1 − e−iaT

1 − e−ibT

)
. (6.2)

Taking the limit T → ∞ we arrive at the expression

�Ms = −
√

α0

2
+ lim

L→∞



∑∞

n=1

(√
α0 + k2

n −√α0 + q2
n

)
, periodic BC∑∞

n=2

(√
α0 + k2

n −√α0 + q2
n

)
, anti-periodic BC

1
2

∑∞
n=2

(√
α0 + k2

n −√α0 + q2
n

)
, rigid walls,

(6.3)

where BC is the abbreviation of boundary conditions.
The aim of our analysis of �Ms within the discretization procedure is to show that the

discretization procedure gives �Ms in the form of (5.3).
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The subsequent analysis of �Ms we carry out for periodic boundary conditions only. One
can show that for anti-periodic boundary conditions and rigid walls the result is the same.

For the next transformation of the rhs of (6.3), we propose to use the following integral
representation:√

α0 + k2
n −

√
α0 + q2

n =
∫ +∞

−∞

dω

2π i
ln

[
α0 + k2

n − ω2 − i0

α0 + q2
n − ω2 − i0

]
. (6.4)

This gives after interchanging the integration over ω with the summation over n

�M(p)
s = −

√
α0

2
+
∫ +∞

−∞

dω

2π i
lim

L→∞
lim

N→∞

N∑
n=1

ln

[
α0 + k2

n − ω2 − i0

α0 + q2
n − ω2 − i0

]
, (6.5)

with mode-counting regularization procedure [20] applied. Passing to the continuous
momentum representation [20] and using the spectra of the momenta of Gaussian fluctuations
and the Klein–Gordon fluctuations (the vacuum fluctuations) adduced in table 1 we transcribe
the rhs of (6.5) into the form

�M(p)
s = −

√
α0

2
+
∫ +∞

−∞

dω

2π i
lim

L→∞
lim

N→∞

[∫ kN

k1

dk
dn(k)

dk
ln(α0 + k2 − ω2 − i0)

−
∫ qN

q1

dq
dn(q)

dq
ln(α0 + q2 − ω2 − i0)

]

= −
√

α0

2
+
∫ +∞

−∞

dω

2π i
lim

L→∞
lim

N→∞

[∫ kN

k1

dk

2π

(
L +

dδ(k)

dk

)

× ln(α0 + k2 − ω2 − i0) − L

∫ qN

q1

dk

2π
ln(α0 + k2 − ω2 − i0)

]
, (6.6)

where the limits are equal to (see table 1)

k1 = π

L
, kN = qN − δ(qN)

L
= qN −

√
α0

πN
,

q1 = 2π

L
, qN = 2πN

L
.

(6.7)

Rearranging the limits of integrations we get

�M(p)
s = −

√
α0

2
+
∫ +∞

−∞

dω

2π i
lim

L→∞
lim

N→∞

∫ kN

π/L

dk

2π

dδ(k)

dk
ln(α0 + k2 − ω2 − i0)

+
∫ +∞

−∞

dω

2π i
lim

L→∞
L

∫ 2π/L

π/L

dk

2π
ln(α0 + k2 − ω2 − i0)

−
∫ +∞

−∞

dω

2π i
lim

L→∞
lim

N→∞
L

∫ qN

kN

dk

2π
ln(α0 + k2 − ω2 − i0)

= −
√

α0

2
+
∫ +∞

−∞

dω

2π i
lim

L→∞

∫ ∞

π/L

dk

2π

dδ(k)

dk
ln(α0 + k2 − ω2 − i0)

+
∫ +∞

−∞

dω

2π i
lim

L→∞
L

∫ 2π/L

π/L

dk

2π
ln(α0 + k2 − ω2 − i0)

−
∫ +∞

−∞

dω

2π i
lim

L→∞
lim

N→∞
L

kN − qN

2π
ln(α0 + k∗2 − ω2 − i0). (6.8)

For the last term we have applied the mean value theorem with qN − δ(qN)/L < k∗ < qN .
Since the difference kN − qN = δ(qN)/L = √

α0/πN is of order O(1/N), this term vanishes
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in the limit N → ∞.7 As a result we get

�M(p)
s = −

√
α0

2
+
∫ +∞

−∞

dω

2π i
lim

L→∞

∫ ∞

π/L

dk

2π

dδ(k)

dk
ln(α0 + k2 − ω2 − i0)

+
∫ +∞

−∞

dω

2π i
lim

L→∞
L

∫ 2π/L

π/L

dk

2π
ln(α0 + k2 − ω2 − i0). (6.9)

Taking the limit L → ∞ and applying to the last term the mean value theorem we arrive at
the expression

�M(p)
s = −

√
α0

2
+
∫ +∞

−∞

dω

4π i
ln(α0 − ω2 − i0)

+
∫ +∞

−∞

dω

2π i

∫ ∞

0

dk

2π

dδ(k)

dk
ln(α0 + k2 − ω2 − i0), (6.10)

which we transcribe into the form

�M(p)
s = −

√
α0

2
+
∫ +∞

−∞

dω

2π i

∫ ∞

0

dk

2π

iδ(k)

dk
ln(−ω2 − i0) +

∫ +∞

−∞

dω

4π i
ln(α0 − ω2 − i0)

+
∫ +∞

−∞

dω

2π i

∫ ∞

0

dk

2π

dδ(k)

dk
[ln(α0 + k2 − ω2 − i0) − ln(−ω2 − i0)]. (6.11)

The next steps of the reduction of the rhs of (6.11) to the form (5.3) are rather straightforward.
First, one can easily shows that∫ +∞

−∞

dω

2π i

∫ ∞

0

dk

2π

dδ(k)

dk
ln(−ω2 − i0) +

∫ +∞

−∞

dω

4π i
ln(α0 − ω2 − i0)

=
∫ +∞

−∞

dω

4π i
[ln(α0 − ω2 − i0) − ln(−ω2 − i0)] =

√
α0

2
(6.12)

and, second, integrating over ω by parts the last integral in (6.11) can be reduced to the form

�M(p)
s = −2

√
α0

∫ +∞

−∞

dk

2π

∫ +∞

−∞

dω

2π i

1

α0 − ω2 + k2 − i0
. (6.13)

Thus, we have shown that the correction to the soliton mass, induced by Gaussian fluctuations
around a soliton and calculated by means of the discretization procedure, agrees fully with
that we have obtained in continuous space–time (5.3).

Hence, the renormalization of the soliton mass, caused by Gaussian fluctuations calculated
within the space–time discretization technique, coincides with the renormalization of the
soliton mass in continuous space–time. We would like to emphasize that the obtained result
(6.13) does not depend on the boundary conditions.

The calculation of the functional determinant within the discretization procedure has
confirmed the absence of the correction −√

α0/π . This agrees with our assertion that such
a correction does not appear due to Gaussian fluctuations around a soliton, corresponding to
quantum fluctuations to first orders in α0(�

2) and β2.
The reduction of �M

(p)
s of equation (6.1) to expression (5.3) can be carried out directly.

First, summing over n within the mode-counting regularization procedure and taking the limit

7 We would like to emphasize that exactly the term of this kind leads to the contribution of the finite surface term
−√

α0/π in a regularization procedure using expressions (6.3) without turning to the integral representation (6.4).
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L → ∞ we arrive from �M
(p)
s of equation (6.1) at

�M(p)
s = lim

T →∞
1

iT

∞∑
m=−∞

lim
L→∞

{
1

2

[
ln
(−ω2

m + �2(L)
)− ln

(
α0 − ω2

m

)]

+ lim
N→∞

N∑
n=1

[
ln
(
α0 + k2

n − ω2
m

)− ln
(
α0 + q2

n − ω2
m

)]}

= lim
T →∞

1

iT

∞∑
m=−∞

lim
L→∞

{
1

2

[
ln
(−ω2

m + �2(L)
)− ln

(
α0 − ω2

m

)]

+ lim
N→∞

[∫ kN

k1

dk
dn(k)

dk
ln
(
α0 + k2 − ω2

m

)−
∫ qN

q1

dq
dn(q)

dq
ln
(
α0 + q2 − ω2

m

)]}

= lim
T →∞

1

iT

∞∑
m=−∞

lim
L→∞

{
1

2

[
ln
(−ω2

m + �2(L)
)− ln

(
α0 − ω2

m

)]

+ lim
N→∞

[∫ kN

π/L

dk

2π

dδ(k)

dk
ln
(
α0 + k2 − ω2

m

)
+ L

∫ 2π/L

π/L

dk

2π
ln
(
α0 + k2 − ω2

m

)
− L

∫ qN

kN

dk

2π
ln
(
α0 − ω2

m + k2
)]}

= lim
T →∞

1

iT

∞∑
m=−∞

lim
L→∞

{
1

2

[
ln
(−ω2

m + �2(L)
)− ln

(
α0 − ω2

m

)]

+
∫ ∞

π/L

dk

2π

dδ(k)

dk
ln
(
α0 + k2 − ω2

m

)
+ L

∫ 2π/L

π/L

dk

2π
ln
(
α0 + k2 − ω2

m

)}

= lim
T →∞

1

iT

∞∑
m=−∞

{
1

2

[
ln
(−ω2

m

)− ln
(
α0 − ω2

m

)]

+
∫ ∞

0

dk

2π

dδ(k)

dk
ln
(
α0 + k2 − ω2

m

)
+

1

2
ln
(
α0 − ω2

m

)}

= lim
T →∞

1

iT

∞∑
m=−∞

{∫ ∞

0

dk

2π

dδ(k)

dk
ln
(
α0 + k2 − ω2

m

)
+

1

2
ln
(−ω2

m

)}
. (6.14)

Now we use the integral representation 5 and get

�M
(p)

S = lim
T →∞

1

iT

∞∑
m=−∞

∫ ∞

0

dk

2π

2
√

α0

α0 + k2

[
ln
(−ω2

m

)− ln
(
α0 + k2 − ω2

m

)]

= lim
T →∞

∫ +∞

−∞

dω

iT

dm(ω)

dω

∫ ∞

0

dk

2π

2
√

α0

α0 + k2
[ln(−ω2) − ln(α0 + k2 − ω2)]

=
∫ +∞

−∞

dω

2π i

∫ ∞

0

dk

2π

2
√

α0

α0 + k2
[ln(−ω2) − ln(α0 + k2 − ω2)]

= −2
√

α0

∫ +∞

−∞

dω

2π i

∫ +∞

−∞

dk

2π

1

α0 − ω2 + k2 − i0
. (6.15)

For the other boundary conditions we get the same result.
Thus, we have shown that the discretized version of the correction to the soliton mass

reduces to the continuum result if one transcribes first the sum over the quantum number n
of the momenta of Gaussian and vacuum fluctuations into the corresponding integral over the
momentum k.



2196 H Bozkaya et al

7. Renormalization of the two-point Green function in the massive sine-Gordon model

In this section, we show that the renormalization procedure of the two-point Green function
in the sine-Gordon model, developed above, can be applied to the renormalization of the
two-point Green function in the massive sine-Gordon model (the MSG model) [12, 23–34].
The bare Lagrangian of the MSG model is [12]

L(x) = 1

2
∂µϑ(x)∂µϑ(x) − 1

2
m2

0(�
2)ϑ2(x) +

α0(�
2)

β2
(cos βϑ(x) − 1), (7.1)

where m0(�
2) is the bare mass of the free sine-Gordon quanta. The renormalized Lagrangian

reads

L(x) = 1

2
∂µϑ(x)∂µϑ(x) − 1

2
m2

r (M
2)ϑ2(x) +

αr(M
2)

β2
(cos βϑ(x) − 1)

− 1

2
m2

r (M
2)(Zm − 1)ϑ2(x) + (Z1 − 1)

αr(M
2)

β2
(cos βϑ(x) − 1)

= 1

2
∂µϑ(x)∂µϑ(x) − 1

2
Zmm2

r (M
2)ϑ2(x) + Z1

αr(M
2)

β2
(cos βϑ(x) − 1), (7.2)

where Z1 = Z1(αr(M
2), β2,M2;�2) is defined by (1.4). It relates the renormalized coupling

constant αr(M
2) to the bare coupling constant α0(�

2) through the relation (1.3). Then,
Zm = Zm(αr(M

2), β2,M2;�2) is the renormalization constant of the mass of the MSG
model field

mr(M
2) = Z−1/2

m (αr(M
2), β2,M2;�2)m0(�

2). (7.3)

Similar to the sine-Gordon model, we keep the coupling constant β2 unrenormalizable.
For the analysis of the renormalizability of the MSG model with respect to quantum

fluctuations around the trivial vacuum, we expand the Lagrangian (7.2) in powers of ϑ(x).
This gives

L(x) = 1
2

[
∂µϑ(x)∂µϑ(x) − m̃2

r (M
2)ϑ2(x)

]
+ Lint(x), (7.4)

where m̃2
r (M

2) = m2
r (M

2) + αr(M
2) is the effective mass of the sine-Gordon quanta, Lint(x)

describes self-interactions of the MSG model field

Lint(x) = −1

2
m2

r (M
2)(Zm − 1)ϑ2(x) + αr(M

2)

∞∑
n=2

(−1)n

(2n)!
β2(n−1)ϑ2n(x)

+ (Z1 − 1)αr(M
2)

∞∑
n=1

(−1)n

(2n)!
β2(n−1)ϑ2n(x). (7.5)

It is seen that the parameter m̃r (M
2) has the meaning of a mass of free quanta of the MSG

model field ϑ(x). The causal two-point Green function of free MSG model quanta with mass
m̃r (M

2) is defined by

−i�F

(
x; m̃2

r (M
2)
) = 〈0|T(ϑ(x)ϑ(0))|0〉 =

∫
d2k

(2π)2i

e−ik·x

m̃2
r (M

2) − k2 − i0
. (7.6)

At x = 0 the Green function −i�F (0; m̃2
r (M

2)) is equal to [2]

−i�F

(
0; m̃2

r (M
2)
) = 1

4π
ln

[
�2

m̃2
r (M

2)

]
, (7.7)

where � is a cut-off in the Euclidean two-dimensional momentum space.



On the renormalization of the two-point Green function in the sine-Gordon model 2197

The calculation of the correction to the two-point Green function in the MSG model to
first order in αr(M

2) and to all orders in β2 runs parallel to that by (2.10). The two-point
Green function reads

−i�(x) = −i�
(
x, m̃2

r (M
2)
)

+ iαr(M
2)

[
1 − Z1 exp

{
1

2
β2i�F

(
0, m̃2

r (M
2)
)}]

×
∫

d2y
[−i�F

(
x − y, m̃2

r (M
2)
)][−i�F

(−y, m̃2
r (M

2)
)]

+ (−i)(Zm − 1)m2
r (M

2)

∫
d2y
[−i�F

(
x − y, m̃2

r (M
2)
)][−i�F

(−y, m̃2
r (M

2)
)]

.

(7.8)

In the momentum representation, this expression takes the form

−i�̃(p) = (−i)

m̃2
r (M

2) − p2
+

(−i)

m̃2
r (M

2) − p2
iαr(M

2)

[
1 −

(
m̃2

r (M
2)

M2

)β2/8π
]

(−i)

m̃2
r (M

2) − p2

+
(−i)

m̃2
r (M

2) − p2
(−i)(Zm − 1)m2

r (M
2)

(−i)

m̃2
r (M

2) − p2
. (7.9)

The two last terms define the correction to the mass of the MSG model field

δm2
r (M

2) = −αr(M
2)

[
1 −

(
m̃2

r (M
2)

M2

)β2/8π
]

+ (Zm − 1)m2
r (M

2). (7.10)

Thus, for the two-point Green function, calculated to first order in αr(M
2) and to all orders in

β2, we get

−i�̃(p) = (−i)

m̃2
r (M

2) + δm2
r (M

2) − p2
= (−i)

m2
ph − p2

, (7.11)

where mph, the physical mass of the MSG model quanta, is determined by

m2
ph = m̃2

r (M
2) − αr(M

2)

[
1 −

(
m2

r (M
2) + αr(M

2)

M2

)β2/8π
]

+ (Zm − 1)m2
r (M

2)

= m2
r (M

2) + αr(M
2)

(
m2

r (M
2) + αr(M

2)

M2

)β2/8π

+ (Zm − 1)m2
r (M

2). (7.12)

Since the first two terms do not depend on the cut-off �, the last term in (7.12) should
vanish. This means that the renormalization constant (Zm − 1) is of order O

(
α2

r (M
2)
)
, i.e.

(Zm − 1)m2
r (M

2) = 0 to first order in αr(M
2) and to all orders in β2. Thus, the squared

physical mass of the MSG model field is

m2
ph = m2

r (M
2) + αr(M

2)

(
m2

r (M
2) + αr(M

2)

M2

)β2/8π

. (7.13)

In the soft-boson limit, when m2
r (M

2) → 0, the physical mass of the MSG model field
coincides with (2.16).

This agrees with the assertion that the sine-Gordon model is not infrared singular [2] and
testifies that the operator m2

0ϑ
2(x) is soft. That is in agreement with the results obtained by

Amit et al [12].
For finite m2

r (M
2) and in the perturbative regime m2

r (M
2) � αr(M

2) the physical mass
of the MSG model field is equal to
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m2
ph = m2

r (M
2) + αr(M

2)

(
m2

r (M
2)

M2

)β2/8π

, (7.14)

where we have kept only the leading terms in αr(M
2) expansion.

Calculating the second-order correction to the two-point Green function one can show
that the renormalization constant (Zm − 1) vanishes. This implies that the mass parameter
m0(�

2) is unrenormalizable, i.e. m0(�
2) = m0. In this case, the physical mass of the MSG

model field takes the form

m2
ph = m2

0 + αr(M
2)

(
m2

0

M2

)β2/8π

. (7.15)

Since the physical mass of the MSG model field cannot depend on the normalization scale,
we have to set

αph = αr(M
2)

(
m2

0

M2

)β2/8π

−→ αr(M
2) = αph

(
M2

m2
0

)β2/8π

. (7.16)

It is seen that setting the normalization scale M = m0 the renormalized coupling constant
αr

(
m2

0

)
coincides with the physical one, i.e. αr

(
m2

0

) = αph.
The Gell-Mann–Low function, calculated for the coupling constant αr(M

2) defined in
(7.16), is equal to

M
∂αr(M

2)

∂M
= β(αr(M

2), β2) = β2

4π
αr(M

2). (7.17)

The Callan–Symanzik equation for the two-point Green function of the MSG model field reads[
p2 ∂

∂p2
− δ(β2)αr(M

2)
∂

∂αr(M2)
− 1

2
m2

0
∂

∂m2
0

+ 1

]
�̃
(
p2;αr(M

2), β2,m2
0

) = 0, (7.18)

where following [12] we have denoted δ(β2) = (β2 − 8π)/8π . For the derivation of this
equation we have used

F(0, p;αr(M
2), β2) =

(
−m2

0
∂

∂m2
0

+ 2αr(M
2)

∂

∂αr(M2)

)
�̃
(
p;αr(M

2), β2,m2
0

)
. (7.19)

Setting �̃
(
p2;αr(M

2), β2,m2
0

) = D
(
p2;αr(M

2), β2,m2
0

)/
p2 and introducing dimensionless

variables t = p2m2
0

/
M4, α̃r = αr(M

2)/M2 we get[
t

∂

∂t
− 2δ(β2)α̃

∂

∂α̃

]
D(t; α̃) = 0. (7.20)

This agrees well with the renormalization group equation obtained by Amit et al [12], where
2δ(β2)α̃ is the Gell-Mann–Low function, calculated to first order in α̃ and to all orders in β2.

According to the general theory of partial differential equations of first order [15], the
solution of (7.20) is an arbitrary function of the integration constant

C = α̃t2δ(β2), (7.21)

which is the solution of the characteristic differential equation

dt

t
= dα̃

−2δ(β2)α̃
. (7.22)

Hence, the Fourier transform of the two-point Green function of the sine-Gordon field is
equal to

�̃
(
p2;αph, β

2,m2
0

) = 1

p2
D

[
αph

m2
0

(
M2

m2
0

)δ(β2) (
p2m2

0

M4

)2δ(β2)
]

. (7.23)
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Making the renormalization at M2 = m2
0 we get

�̃
(
p2;αph, β

2,m2
0

) = 1

p2
D

[
αr(p

2)

m2
0

]
, (7.24)

where, in analogy with our analysis in section 3, we have introduced the running coupling
constant αr(p

2)

αr(p
2) = αph

(
p2

m2
0

)2δ(β2)

. (7.25)

For δ(β2) < 0, i.e. β2 < 8π , the MSG model with quantum fluctuations around a trivial
vacuum, calculated to first order in αr(M

2) and to all orders in β2, is an asymptotically free
theory for p2 → ∞. In turn for δ(β2) > 0, i.e. β2 > 8π , the running coupling constant
αr(p

2) grows with p2. Of course, due to a perturbative derivation of the Gell-Mann–Low
function (7.17) and the Callan–Symanzik equation (7.18), the running coupling constant
αr(p

2) cannot grow to infinity. The allowed region for momenta p2 is restricted by the
inequality αr(p

2) � m2
0. This gives

p2 � m2
0

(
m2

0

αph

)1/2δ(β2)

. (7.26)

Thus, we have shown that our results on the renormalization of the massive sine-Gordon
model, carried out for the two-point Green function, agree well with those obtained by Amit
et al [12].

8. Conclusion

We have investigated the renormalizability of the sine-Gordon model. We have analysed the
renormalizability of the two-point Green function to second order in α and to all orders in β2.
We have shown that the divergences appearing in the sine-Gordon model can be removed by
the renormalization of the dimensional coupling constant α0(�

2). We recall that the coupling
constant β2 is not renormalizable. This agrees well with a possible interpretation of the
coupling constant β2 as h̄ [1, 22]. The perturbation theory is developed with respect to the
renormalized dimensional coupling constant αr(M

2) depending on the normalization scale
M and the dimensionless coupling constant β2. Quantum fluctuations relative to the trivial
vacuum calculated to first order in αr(M

2) and to arbitrary order in β2 form a physical coupling
constant αph after the removal of divergences. The physical coupling constant αph is finite and
does not depend on the normalization scale M. We have argued that the total renormalized
two-point Green function depends on the physical coupling constant αph only. In order to
illustrate this assertion (i) we have calculated the correction to the two-point Green function to
second order in αr(M

2) and to all orders in β2 and (ii) we have solved the Callan–Symanzik
equation for the two-point Green function with the Gell-Mann–Low function, defined to all
orders in αr(M

2) and β2. We have found that the two-point Green function of the sine-
Gordon field depends on the running coupling constant αr(p

2) = αph(p
2/αph)

β̃2/8π , where
β̃2 = β2/(1 + β2/8π) < 1 for any β2.

In addition to the analysis of the renormalizability of the sine-Gordon model with respect
to quantum fluctuations relative to the trivial vacuum, we have analysed the renormalizability
of the sine-Gordon model with respect to quantum fluctuations around a soliton. Following
Dashen et al [9, 10] and Faddeev and Korepin [11] we have taken into account only Gaussian
fluctuations.

For the calculation of the effective Lagrangian, induced by Gaussian fluctuations, we
have used the path-integral approach and integrated over the field ϕ(x), fluctuating around a
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soliton. This has allowed us to express the effective Lagrangian in terms of the functional
determinant. For the calculation of the contribution of the functional determinant we have used
the eigenfunctions and eigenvalues of the differential operator, describing the evolution of the
field ϕ(x). We have shown that the renormalized effective Lagrangian, induced by Gaussian
fluctuations around a soliton, coincides completely with the renormalized Lagrangian of the
sine-Gordon model, caused by quantum fluctuations around the trivial vacuum to first order
in α0 and to second order in β2. After the removal of divergences the soliton mass is equal
to the mass of a soliton, calculated without quantum corrections, up to the replacement
α0 → αph. This implies that Gaussian fluctuations around a soliton do not produce any
quantum corrections to the soliton mass. Hence, no non-perturbative singularities of the
sine-Gordon model at β2 = 8π can be induced by Gaussian fluctuations around a soliton.

For the confirmation of our results, obtained in continuous space–time, we have calculated
the functional determinant caused by Gaussian fluctuations around a soliton within the
discretization procedure with periodic and anti-periodic boundary conditions and rigid walls.
We have shown that the result of the calculation of the functional determinant (i) coincides with
that obtained in continuous space–time and (ii) does not depend on the boundary conditions.

Finally, we have analysed the renormalization of the two-point Green function of the
massive sine-Gordon model. We have shown that the mass operator m2

0ϑ
2(x) is soft. In the

infrared limit m0 → 0 the physical mass of the massive sine-Gordon model quanta reduces
to our result (2.16). For m2

0 � αr(M
2) we have shown that the mass parameter m0 is

unrenormalizable. The physical coupling constant αph has been calculated to first order in
αr(M

2) and to all orders in β2. This has allowed us to calculate the Gell-Mann–Low function
and to derive the Callan–Symanzik equation for the two-point Green function. We have shown
that the Callan–Symanzik equation reduces to the form used by Amit et al [12] to the same order
in perturbation theory. Solving this equation we have calculated the running coupling constant
and found that for β2 < 8π the massive sine-Gordon model with quantum fluctuations around
a trivial vacuum, calculated to first order in αr(M

2) and to all orders in β2, is asymptotically
free for infinitely large momenta. In turn, for β2 > 8π the running coupling constant αr(p

2)

grows with p2. But since αr(p
2) has been calculated perturbatively for m2

0 � αr(M
2), the

running coupling constant should obey the constraint m2
0 � αr(p

2). This restricts the region

of the allowed momenta p2 � m2
0

(
m2

0

/
αph
)1/2δ(β2)

with δ(β2) = (β2 − 8π)/8π [12]. All
these results do not contradict those obtained by Amit et al [12].

The renormalization of the sine-Gordon model, which was carried out before 1979 in
[23–26], has been discussed perfectly well by Amit et al. After 1980, as has been pointed out
by Nándori et al [27], the main results on the renormalization of the sine-Gordon model in
two dimensions have been obtained in [28–34]. In these papers, the sine-Gordon model has
been investigated at finite temperature in connection with the XY model and the existence of
phase transitions. The Coleman fixed point at β2 = 8π has been recovered in our approach
[2] as well as in the present paper.

Unlike [12, 23–34], we would like to apply the results obtained in this paper to the
analysis of the FQHE [6, 7]. As has been shown in [22], the massive Thirring model, which
can describe one-dimensional edge fermions [6, 7], bosonises to the sine-Gordon model for
β2 > 8π . According to [22], for β2 > 8π the sine-Gordon system produces mainly solitons,
which can play an important role in the FQHE [35].
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