IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On the renormalization of the two-point Green function in the sine-Gordon model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 39 2177
(http://iopscience.iop.org/0305-4470/39/9/013)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 05:01

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 2177-2201 doi:10.1088/0305-4470/39/9/013

On the renormalization of the two-point Green
function in the sine-Gordon model

H Bozkaya, M Faber, A N Ivanov' and M Pitschmann

Atominstitut der Osterreichischen Universititen, Arbeitsbereich Kernphysik und Nukleare
Astrophysik, Technische Universitit Wien, Wiedner Hauptstrasse 8-10/142, A-1040 Wien,
Osterreich

E-mail: hidir@kph.tuwien.ac.at, faber@kph.tuwien.ac.at, ivanov@kph.tuwien.ac.at and
pitschmann@kph.tuwien.ac.at

Received 4 November 2005, in final form 13 January 2006
Published 15 February 2006
Online at stacks.iop.org/JPhysA/39/2177

Abstract

We analyse the renormalizability of the sine-Gordon model using the two-point
causal Green function. We show that all divergences can be removed by the
renormalization of the dimensional coupling constant using the renormalization
constant Z;, calculated in Faber and Ivanov (2003 J. Phys. A: Math. Gen. 36
7839) within the path-integral approach. We calculate the Gell-Mann-Low
function and solve the Callan—-Symanzik equation for the two-point Green
function. We analyse the renormalizability of Gaussian fluctuations around
a soliton. We show that Gaussian fluctuations around a soliton solution are
renormalized like quantum fluctuations around the trivial vacuum and do not
introduce any singularity to the sine-Gordon model at 82 = 8. We calculate
the correction to the soliton mass, caused by Gaussian fluctuations around a
soliton, within the discretization procedure for various boundary conditions and
find complete agreement with our result, obtained in continuous space—time.

PACS numbers: 11.10.Ef, 11.10.Gh, 11.10.Hi, 11.10.Kk

1. Introduction

We describe the sine-Gordon model by the Lagrangian [1, 2]

2
L(x) = éaﬂﬁ(x)a“ﬁ(x) + “OI(;Z\ )(Cos BY(x) — 1), (1.1

where the field ¢ (x) and the coupling constant 8 are unrenormalizable, o (A?) is adimensional
bare coupling constant and A is an ultra-violet cut-off. As has been shown in [2] the
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coupling constant arg(A?) is multiplicatively renormalizable, and the renormalized Lagrangian
reads [2]

(cos B (x) — 1)+ (Z;, —1)

(cos B (x) — 1)

L(x)z%a,ﬂ?(x)aﬂﬁ(xpr ; 2 r( 2)

1 o
= Eauz?(x)al‘z?(x) +Z; ; )(cos,Bﬂ(x) 1), (1.2)
where Z; = Z(a,(M?), ,32, M?; A?) is the renormalization constant [2—5] depending on
the normalization scale M. The renormalization constant relates the renormalized coupling
constant o, (M?), depending on the normalization scale M, to the bare coupling constant

ag(A?) [2-5]

o (M%) = Z7 (e (M?), B2, M?; AP)ag(A7). (1.3)
As has been found in [2] the renormalization constant Z; (. (M?), 2, M?; A) is equal to
A2 B*/87
Zi(ar(M?), B2, M*; A?) = <W) : (1.4)

This result is valid to all orders of perturbation theory developed relative to the coupling
constant 8% and og(A?) [2]. Since the normalization constant does not depend on a, (M?), we
write below Z; = Zl(,Bz, M?; A?).

For the analysis of the renormalizability of the sine-Gordon model with respect to quantum
fluctuations around the trivial vacuum, we expand the Lagrangian (1.2) in powers of ¥ (x).
This gives

L(x) = 3[0,0(x)3"D (x) — o (MH)P*(X)] + Ling(x), (1.5)
where L;,(x) describes the self-interactions of the sine-Gordon field
( 1) 2(11 1) o2n 2 ( 1) 2(n—]) 2n
Lin(x) = a,(M )Z GBI @+ (2 - D )Z GBI ).

(1.6)

It is seen that the coupling constant o, (M?) has the meaning of a squared mass of free quanta
of the sine-Gordon field ¥ (x). The causal two-point Green function of free sine-Gordon
quanta with mass o, (M?) is defined by

) d2k e—lk - X
—1Afp(x; a(M?)) = (0[T(D (x)(0))]0) = ) (M) — k2 — 0" (1.7
At x = 0 the Green function —iA £ (0; a, (M?)) is equal to [2]
CiA (0 @, (M?) = ——In [A—Z] , (1.8)
47 a,(M?)

where A is a cut-off in the Euclidean two-dimensional momentum space [2].

As usual the generic analysis of the renormalizability of a quantum field theory is carried
out in the form of power counting, the concept of the superficial degree w(G) of divergence of
momentum integrals of the Feynman diagram G based on dimensional considerations [3-5].
Following the standard procedure [3—5] one can show that

a)(G):2—22V2,,, (1.9)
{n}

where V5, is the number of 2n-vertices of the self-interaction term 92" (x) of the sine-Gordon
field ¥ (x). Relation (1.9) testifies the complete renormalizability of the sine-Gordon model.
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The main aim of this paper is to show that the sine-Gordon model is well defined not only
for B2 < 87 but for 0 < B> < oco. An important application of this result is the fractional
quantum Hall effect (the FQHE) [6, 7]. Indeed, as has been pointed out in [6, 7] the FQHE
is defined by the edge tunnelling of quasi-particles and electrons. In the bosonized form the
Hamiltonian of the interaction of quasi-particles and electrons has the form of the sine-Gordon
interaction [6]

Hin (x) = —% cos B (x). (1.10)
The parameter A2 is defined by [6]
e 4v for tunnelling of quasi-particles (L1
4an /v for tunnelling of electrons '

where v is the filling factor [8]. If the coupling constant 82 obeys the constraint 82 < 87, only
quasi-particles can be responsible for the FQHE. The participance of electrons in the FQHE
is prohibited. However, if there is a possibility for the coupling constant 2 to be greater than
87, i.e. B > 8, the participance of electrons in the FQHE cannot be suppressed. This opens
new possibilities for the dynamics of the FQHE.

The paper is organized as follows. In section 2, we investigate the renormalizability of
the two-point Green function of the sine-Gordon field. Quantum fluctuations are calculated
relative to the trivial vacuum up to second order in o, (M 2y and to all orders in B%. We show that
after renormalization of the two-point Green function to first order in ¢, (M 2) and to all orders
in A2 all higher order corrections in o, (M?) and all orders in 2 can be expressed in terms
of apn, the physical dimensional coupling constant independent of the normalization scale M.
We derive the effective Lagrangian of the sine-Gordon model, taking into account quantum
fluctuations to second order in o, (M?) and to all orders in 82. We show that all divergences can
be removed by the renormalization constant (1.4). The first finite correction to oy, is of order
O(apnB D) only. It appears to the second order in o, (M 2) and the third order in 82. In section 3,
we analyse the renormalizability of the sine-Gordon model within the renormalization group
approach. We use the Callan—Symanzik equation for the derivation of the total two-point
Green function of the sine-Gordon field in momentum representation. We show that the two-
point Green function depends on the running coupling constant a, (p) = apn(p?/apn)? /57,
where B2 = B2/(1 + B2/8m) < 1 for all B2. In section 4, we investigate the renormalizability
of the sine-Gordon model with respect to Gaussian fluctuations around a soliton solution.
We show that Gaussian fluctuations around a soliton solution lead to the same renormalized
Lagrangian of the sine-Gordon model as quantum fluctuations around the trivial vacuum taken
into account to first order in o, (M?) and /32. In section 5, we discuss the correction to the
soliton mass induced by quantum fluctuations. We show that Gaussian fluctuations around a
soliton solution reproduce the same correction as the quantum fluctuations around the trivial
vacuum, calculated to first orders in «,-(M?) and 82. This correction does not contain the finite
quantum correction obtained by Dashen et al [9, 10] (see also [11]). In section 6, we discuss
the calculation of the correction to the soliton mass A M;, induced by Gaussian fluctuations,
within a discretization procedure for various boundary conditions. We show that the result
of the calculation of AM; does not depend on the boundary conditions and agrees fully with
that obtained in continuous space—time. In section 7, we analyse the renormalizability of the
causal two-point Green function in the massive sine-Gordon model and compare our results
with those obtained by Amit et al [12]. In the conclusion, we summarize the obtained results
and discuss them.
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2. Renormalization of causal two-point Green function

The causal two-point Green function of the sine-Gordon field is defined by
) 1 86 1 3
—AGR) = e
16J(x)18J(0)

where Z[J] is a generating functional of Green functions

Z[J]s=0, 2.1

ZlJ] = / mexp{i f dzy[z(y>+z9(y>1<y)]}

1
= / DY exp {i f d*y [E@ﬂ(y)a“ﬂ(y) —a, (MM (y) + Lim (y) + ﬂ(y)J(y)“ ,

2.2)
normalized by Z[0] = 1, J(x) is the external source of the sine-Gordon field ¥ (x).
Substituting (2.2) into (2.1) we get
—iA(x) = /Dz?z‘}(x)l?(O) exp {1/ dzyﬁim(y)}
i 2 L 2\ 62
xexp{E/d Y10, ()" P (y) — ap (M7)D (y)]}, (2.3)

where Liy(y) is given by (1.6). The rhs of (2.3) can be rewritten in the form of a vacuum
expectation value of a time-ordered product [13]

—iA(x) = (0T <13‘(X)19(0) exp {i/dzyﬁim(y)}) UFS 2.4

where the index ¢ means the connected part, ¥ (x) is the free sine-Gordon field operator with
mass o, (M?) and the causal two-point Green function A g (x, o, (M 2)) defined by (1.7).
In the momentum representation, the two-point Green function (2.4) reads

—ik(p) = —i/dzx et X A(x)

= / dx el X (0T (ﬂ(x)ﬁ((» exp {i / dzy.cim<y>}) |0)... (2.5)

For the analysis of the renormalizability of the sine-Gordon model, we propose to calculate the
corrections to the two-point Green function (2.4) (or to (2.5)), induced by quantum fluctuations
around the trivial vacuum. Expanding the rhs of equation (2.4) in powers of o, (M?) and B>
we determine

—iAW) =) (DA™ (x, 0, (M?)), (2.6)

m=0

where (—i) A" (x, o, (M?)) is defined by

—iA™ (x, a,(M?)) = ;7 / / a2y -+ A2y (01T ()3 (0) Line (1) * - - Line (V) [0).c.
2.7)

The Green function (—i)A© (x, a, (M?)) coincides with the Green function (1.7) of the free
sine-Gordon field.
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In the momentum representation, the correction to the two-point Green function
(—D)A (x, o, (M?)) can be written as

_iA(m)(lLar(MZ)) — /d2xe+ip 'x(—i)A(’”)(x,ot,(Mz)) — 1_'/d2xe+ip - X
m.

/ /d2y1 &y (OIT@ ()P (0) Lint(y1) -+ * Lint (ym))10)ec- (2.8)
Now let us proceed to the analysis of the perturbative corrections to the two-point Green

function.

2.1. Two-point Green function to first order in o, (M?) and to all orders in B>

The correction to the two-point Green function to first order in o, (M?) and to all orders in g2
is defined by

—iAD(x, a,(M?) =i / d2y1 (O] T (x) 3 (0) Line (1)) |0).

[ee) —1)
= i, (M?) Z %ﬂ“*“ / Ey(0IT(@ ()9 (0)9™" (1))10),

="
(2n )‘

Making all contractions we arrive at the expression

+ia, (M?)(Z) — I)Z J / d?y(OIT® ()9 (0)9" (»))10).. (2.9)
—iA" (x, @, (M?)) = i, (M?) [1 — Ziexp {%ﬂziAF(O, m(M%)H

x / y[—iAr(x — y, o, (MP)[=iAF (=Y, &, (M)]. (2.10)

Using the normalization constant Z;, given by (1.4), and definition (1.8) of the two-point
Green function we remove the cut-off A

o\ /8T
—iAD (x, @, (M?)) = ia, (M?) [1 — (“’(M )> }

M?2
X /dzy[—iAF(x — ¥, o (MP)][—iAp(—y, o (M?))]. (2.11)

Thus, the renormalized causal two-point Green function of the sine-Gordon field, defined to
first order in o, (M?) and to all orders in B2, is given by

o B2/8T
CIAG) = —iA x4y (M2)) + i, (MP) [1 ~ <ar(M )) }

M2
x / Py[—iAp(x — y, 0 (MDI[—iAF(=y, o, (M*))]. (2.12)

In the momentum representation, the two-point Green function (2.12) reads
~ —1 —1 ; M2 B*/87 s
T | R o NPV PO LA (—i)
a (M) — p?  a,(M?) — p? M> a, (M?) — p?
(2.13)
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The second term defines the correction to the mass of the sine-Gordon field

N
Sa, (M?) = —a, (M?) [1 _ (“1(‘% )) } : (2.14)

Thus, the two-point Green function, calculated to first order in o, (M 2y and to all orders in ;82,
is equal to

—iA(p) = (=D - (2.15)
o, (M?) + 8o, (M?) — p? Oph — p?
where oy, is determined by
, 2 , [ (M?) B*/8%
aph = (M) + 80, (M*) = o, (M7) < Ve ) . (2.16)
This gives also o, (M 2) in term of M and Olph
2\ B?/8m 3 B
o, (M?) = apn (-) , B* = - (2.17)
oot 1+ £
8w

The Green function (2.15) can be obtained to leading order in 82 from the Lagrangian

o, (M?) (o, (M?)
(i

1 " Olph
= 500 ("D () + F(cosﬁﬂ(x) —1). (2.18)

B /8
Legr(x) = %Bﬂﬁ(x)a‘%?(x) + ) (cos B (x) — 1)

We argue that higher order corrections to the two-point Green function in o, (M?) and to all
orders in B2 should depend on the physical coupling constant o, only

sm
1

—IAM (@, (M) = — / o / &y1- - &y OIT@ (@)D (0) Line(31) - - Lion () |0)e

= —iA" (x, atpn) (for m > 2). (2.19)
In order to prove this assertion it is sufficient to analyse the renormalization of the causal
two-point Green function to second order in o, (M?) and to all orders in 8.

2.2. Two-point Green function to second order in o, (M?) and to all orders in B>

The correction to the two-point Green function to second order in «, (M?) and to all orders in
B2 is defined by

1
—iA® (x, a,(M?) = - / / dy1d%y2 (01 T(® ()9 (0) Lint (V1) Lint (¥2))0).- (2.20)

After the extraction of the contributions corresponding to the second order of the expansion
of the geometric series, the non-trivial contribution is

2 2
—iA? (x, @, (M%) = [ar<M2>zl exp {%mp(o, m(M%)” % / / &y &y,
x [—iAF(x = y1, 0, (M?))] <cosh[—ﬁ2mp<y1 — 2. o, (M?)] -1

1
- Eﬁ“[—iAF(yl —», oer(Mzmz) [—iAF(y1, o (M?)]
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) 2
- [ar<M2)zl exp {%imo, oe,.(Mz))”

1
Xﬁ //d2y1 Eyal—iAr(x = y1, @ (M)](sinh[— %A £ (1 — y2, @, (M?))]

— BA—=iAr (1 — y2, r (MP)D[—=iAF (y2, o, (M?))]. (2.21)

Since the coupling constant &, (M?) can be replaced everywhere by apn by means of the
renormalization constant Z; (1.4), in the momentum representation the correction to the
two-point Green function to second order in oy, takes the form

o o[ =D T
—1A (p,C(r(M )) = IOtph m
p

s dq 1 ¢ 1
= @n—-D'J) @m)%iap, — q12 (27)%1 oy, — q22

o2 1 1
Q)4 aph — G5, 2 Cph — (P —q1 — G2 — +++ — G2n—2)?

B S 134n—2 dqu 1 d26]2 1 o

— emt ) Qo)tiopm —qi ) Qr)Yiapm —q;

d2 n— 1 1 A

X 12 2‘1 5 S = —iAD (p, o).
(2m)“i Oph — 45,1 %ph — (Gr+g2+---+qm-1)

(2.22)

This proves relation (2.19) to second order in o, (M?) and to all orders in 82. The proof of
relation (2.19) to arbitrary orders in «, (M 2y and B2 runs in the same way.

The even-order corrections in A2, i.e. O (oz;h (,82)2’”2) , introduce a non-trivial momentum
dependence of the two-point Green function, whereas the odd-order corrections in ﬂ2, i.e.
o (agh B 2)2"_1), do not depend on the momentum p. They contribute to the effective coupling

constant oegr = aphf(ﬂz), where f(8%) = 0(8%).

2.3. Physical renormalization of the sine-Gordon model

Thus, using the results obtained above we can formulate a procedure for the renormalization
of the sine-Gordon model dealing with physical parameters only. Starting with the Lagrangian
(1.1) and making a renormalization at the normalization scale M? = apn we deal with physical
parameters only

app \ B2 /87
o = 27 (B ani ADan(A?) = ao(A?) (F5) (2.23)
The renormalized Lagrangian is defined by
1 " Qph CQph
L(x) = Eaﬂz&(x)a ?(x) + F(COS B (x)—1)+(Z; — I)F(cos BU(x) —1) (2.24)

with the renormalization constant Z, (82, Qph; A% = (A? /ocph)’gz/ 87 From relation (2.17) at
M? = apy one can obtain that o, (apn) = apn. The calculation of perturbative corrections to
the two-point Green function of the sine-Gordon model shows that the first-order correction
in app vanishes in accordance with equation (2.14). Non-trivial corrections appear only to
second and higher orders in opy,.
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One can also show that the results obtained within the physical renormalization of the
sine-Gordon model can be fully reproduced by using the normal-ordered Lagrangian

L(x) = L D ()79 (x) : +ﬂ— (cos B (x) — 1) : (2.25)

In this case all corrections to the two-point Green function are expressed in terms of o and
finite.

3. Renormalization group analysis

In this section, we discuss the renormalization group approach [3-5] to the renormalization
of the sine-Gordon model. We apply the Callan—-Symanzik equation to the analysis of the
Fourier transform of the two-point Green function of the sine-Gordon field.

The Callan—Symanzik equation for the Fourier transform of the two-point Green function
of the sine-Gordon field (2.5), which we denote below as —iA(p; a,.(M?), B?), is equal to [3]

[— o+ Bl (M), B o o Mz) } A(p; ap(M?), B*) = F(0, p; a,(M?), %), (3.1)
where B(a,(M?), B?) is the Gell-Mann-Low function
da, (M?) _ 2 2
M——— = B, (M), B°). (32)

The term y (o, (M?), %), describing an anomalous dimension of the sine-Gordon field, is
equal to zero [3]. The rhs of (3.1) is defined by

F(O, ps oy (M?), %) = / f Cx &yt X Opr(0 (o (09 O el S TYEmO) o)
3.3)
where Liy(y) is equal to [2]

Lin(y) = %(oosﬂﬂ(x) — ). (3.4)

Then, ©/,(y) is the trace of the energy—momentum tensor ®© ,,,(x). For a (pseudo)scalar field
¥ (x), described by the Lagrangian L£(x), it is defined by [3]

dL(x)
O, (x) = 319 0n) ———0,0(x) — g L(x). (3.5)
Using the Lagrange equation of motion one can show that
"0, (x) =0. (3.6)

For the sine-Gordon model, the energy—momentum tensor ©,,, (x) reads
1
O (x) = 3,0 (x)0,0(x) — g [iaxﬂ(x)akz?(x) + %(cos BU(x) — 1)] . 3.7
The trace of the energy—momentum tensor ©,,, (x) is equal to
20[0
@ﬁ(x) = —F(cos B (x)—1) =2V[¥(x)], 3.8)

where V[1(x)] is the potential density functional of the sine-Gordon field 9 (x).
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Since the trace of the energy—momentum tensor is proportional to the potential energy
density, the Fourier transform F (0, p; o, (M 2), ,82) can be related to the two-point Green
function as

F(O, p; a,(M?), B = 2a,(M2>WA(p; o, (M?), B, (3.9)

where we have used the definition of the trace @ﬁ(y) of the energy—momentum tensor
equation (3.8) and the relation g = a, (M?)Z (8%, M?; A?).

Substituting (3.9) into (3.1) we arrive at the Callan-Symanzik equation for the Fourier
transform of the two-point Green function of the sine-Gordon field

0 1 0 -
2 2y g2 2 2 2y g2
—p-—+ | =B(a,(M?), —o,(M°) | ——— — 1| A(p*; o, (M?), =0, (3.10

[papz (zﬁ(a( ) BY) — ax( ))8a,(M2) } (p75 o, (M7), B7) (3.10)
where we have taken into account that A(p; o, (M?), 8%) should depend on p? due to Lorentz
covariance.

For the solution of (3.10) we have to determine the Gell-Mann—-Low function (3.2). For
the coupling constant «, (M 2y, defined by (2.17), the Gell-Mann—Low function is

2
Bla,(M?), ) = ﬂ—a (M), 3.11)
where g% = p2/(1 + B%/8) (2.17). This gives the Callan—Symanzik equation
2 0 B’ 0 X2, 2y @2y _
[P " <1 . ) a (M )—ar(Mz) +1}A(p s, (M), B5) = 0. (3.12)

Setting A(p*; a, (M?), %) = D(p: o, (M?), )/ p* we get
B ,62 0
2 % (1 B o 2 D(p*; e (M?), 5 =0.  (3.13
[”apz ( 5 ) M5 | P (), 87 (3.13)
Due to dimensional consideration the function D( pz; a,(M?), B%) should be dimensionless,

depending on the dimensionless variables p? = p?/M? and @ = o, (M?*)/M?, where M is a
normalization scale. This gives

[ﬁzi+<1 ﬂz)a—}D(” @, p* =0. (3.14)
3 p? 87 ) 0a '

According to the general theory of partial differential equations of first order [15], the solution
of (3.14) is an arbitrary function of the integration constant

C = = (P, (3.15)
P?
which is the solution of the characteristic differential equation
ﬂZ 2 da
11— — = —. 3.16
< 87 ]32 @ (3-16)
Hence, the Fourier transform of the two-point Green function of the sine-Gordon field is equal
to
B?/8n
3 1 [a? p2\*7/
2. 2y @2y _ r
A(p™ o, (M7), B7) = ?D|: 2\ . (3.17)

The argument of the D-function can be expressed in terms of the running coupling constant
2
a,(p°)

B*/8 B*/8 B*/8 B?/8
o =ao) () e () () can (). Gas)
M2 P Qph M? P Oph
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The solution of the Callan—-Symanzik equation for the Fourier transform of the two-point
Green function of the sine-Gordon field is

- 1 (e (p?)
A(pz;aph,ﬂ%:;D[ . }

(3.19)

This proves that the total renormalized two-point Green function of the sine-Gordon field
depends on the physical coupling constant a, only.

4. Renormalization of Gaussian fluctuations around solitons

We apply the renormalization procedure expounded above to the calculation of the contribution
of quantum fluctuations around a soliton solution. We start with the partition function

Zsg = /Dl? exp {i/dzx [%Bﬂﬁ(x)a“ﬁ(x) + %(cosﬁﬁ(x) — 1)i|}

= /Dﬂ exp {i/dzxﬁ[ﬁ(x)]}. 4.1)

Following Dashen et al [9, 10] (see also [16]) we treat the quantum fluctuations of the sine-
Gordon field ¢ (x) around the classical solution ¥ (x) = ¢ (x) + ¢(x), where ¢(x) is the field
fluctuating around 9., (x), the single soliton solution of the classical equation of motion

D) + 7 sin fiee(x) = 0 (42)
equal to [9, 11, 16]
Yee(x) = %arctan(exp(\/ot_oy(x1 —ux%) = %arctan(exp(\/a_oa)), (4.3)

where u is the velocity of the soliton, 0 = y(x' — ux®) and y = 1/+/1 — u2.2

Substituting ¥ (x) = P¢(x) + ¢(x) into the exponent of the integrand of (4.1), using the
equation of motion for the soliton solution ¥.¢(x), and dealing with Gaussian fluctuations only
[9, 10], we transcribe the partition function (4.1) into the form

ZsG = exp{i/dzxﬁ[ﬁcg(x)]} /D(pexp{—i%/dr doo(t, o)

2(10
X |:D+ao—mi| (p(T,O')}. (44)

It is seen that /g has the distinct meaning of the mass of the quanta of the Klein—Gordon
field ¢(t, o) coupled to an external force described by a scalar potential®.
Integrating over the fluctuating field ¢ (7, o), we transcribe the rhs of (4.4) into the form

Zsg = exp {1/ d2x L[ (x)] + iéS[ﬁcg]} . 4.5)

2 In analogy with the ‘spatial’ variable ¢ we can define the ‘time’ variable for the soliton moving with velocity u
as 7 = y(x® — ux!). In variables (r, o) an infinitesimal element of the two-dimensional volume d2x is equal to
d?x = drdo and the d’Alembert operator [ is defined by (I = 8%/872 — 9%/802.

3 The parameter g should enter with the imaginary correction g — ag — i0. This is required by the convergence
of the path integral [18].
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‘We have denoted

) . ) Det(™] + ag)
exp(i6S[Pece]} = eXp{lfd X8 Lege[Dee (x)]} = 5
Det (D vao- —)
cosh” (/o)
1 1 d’p
= exp {_E Xn:lnkn + 3 / dzx/ —(27[)2 In(eg — pz)} , (4.6)

where p is a (1 + 1)-dimensional momentum. The second term in the exponent corresponds
to the subtraction of the vacuum contribution. The effective action, caused by fluctuations
around a soliton solution, is defined by

8S[¥] = / d2x8 Lege[Der (x)] = i% Zn:m A + % / d*x f (;;‘;’ 57 In(o — ), 4.7
where A, are the eigenvalues of the equation
<D+%———§@——>%amo=u%wm) 4.8)
cosh”(/ago)

and @, (7, o) are eigenfunctions. The quantum number n can be both discrete and continuous.
This implies that the sum over 7 in (4.6) should contain both the summation over the discrete
values of the quantum number n and integration over the continuous ones.

According to the Fourier method [17], the solution of equation (4.8) should be taken in
the form

on(T,0) = e, (o), 4.9)

where —o0o < w < 400 and v, (o) is a complex function®.
Substituting (4.9) into (4.8) we get

d? 2 20
<@ +k°+ W) Ya(r,0) =0, (4.10)
where we have denoted
k% = A, + @® — . 4.11)

This defines eigenvalues A, as functions of w and k
A =0tg — 0 + k7 (4.12)

The parameter k£ has the meaning of a spatial momentum —oo < k < +0o. The solutions of
equation (4.10) are’

N 1 V(o) i —ik + /og tanh(/ogo) viko

A 1, — < 9 k G = e b
2 cosh(/ogo) 2 VE* + g

where the eigenfunction ¥, (') has eigenvalues A, = —w? and the eigenfunctions /(') have

eigenvalues A, = oy — w” + k. In the asymptotic region & — oo the function v/, (o) behaves
as

Yp(o) = (4.13)

1 I
I//k(o,) - e+lko'+1§5(k)’ (414)
V2

4 Since ¢n (1, o) isareal field, we have to take the real part of the solution (4.9) only, i.e. ¢(7,0) = Re(e_iwr v (0)).
Though without loss of generality, one can also use complex eigenfunctions [10, 11, 16].
5 The solutions of equation (4.10) are well known [16] (see also [10, 11].
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where 8 (k) is a phase shift defined by [16]

8(k) = 2 arctan @. (4.15)
The solutions (4.13) satisfy the completeness condition [16]
+00
/ dkyri ()Y () + Y (0 ) Yp(0) = 8(0” — o). (4.16)
—0Q

The fluctuating field ¢ (7, o) is equal to
1 /%o 1 —iwt
€ s
V2 2 cosh(/ayo)
I i —ik+ . /agtanh(\/@o0) ;. ire
Puk(T,0) = e “"Yr(o) = — gioTtiko,
V2 2 VE? +ag

In terms of the eigenvalues A, = —w?and A, = ap — w?* + k? and eigenfunctions (4.17) the
effective action 6S[9,] is determined by

1 ) +00 dCl) +00 ) ) )
8S[ﬁcg]=—§/d x/ e / dk |y (x)]” In(eg — @ + k7)
oo 271 J_

l 2 +ood_w P RT) 1 2 d*p 2
— 2/d x/_oo 2n_i|1m,(x)| In(—w )+2fd x/ oA In(g — p°). (4.18)

Using the explicit expressions for the eigenfunctions ¥ (x) and v, (x) we reduce the rhs of
(4.18) to the form

 dw [T dkk2+ tanh?
55[1&1@]_—-/& / ”/ G tanh (Vaoo) | k)

P (T,0) = e TY(0) =

4.17)

2mi k2 + o
+00 d 1
e o)+ [ & / In(ao — p?).
27i 2 cosh?(\/ao) (m)*
4.19)
Introducing the notation
: 1(1 Bee(x)) i V[dee(x)] (4.20)
—— = —(1 —cos B (x)) = — ce(x .
cosh’(Jago) 2 ¢ 20 t
we obtain the effective Lagrangian 8 Leg[0c(x)]. It is equal to®

8 Leir[Dee(x)] = ﬂV ()fmd‘”fmdk !
el Vel = ce(r)] 2mi 21 k% +

fm do /m I 1nc 24 k2 + 1/ EP o — p?). @21)
—= — In(ag — n(ag — po). .
27 s R

The two last terms cancel each other. This gives

% dw /‘+°° dk 1
o 27 K2+ o

[ln( —w?) — In(ag — @* + k?)]

8 Lot (Do ()] = ——ﬂ V[P ()] / o In(=0?) — oy — 0 + )

27r1
4.22)

© In the contribution of the mode A, = —w? we have used the integral representation

*o dk 1
2,/ 2r k2 +ay
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After the integration by parts over w the effective Lagrangian 8 Leg[0¢¢(x)] is defined by

* dw 1

4.23
2mi oy — o — @ +k2 —i0 ( )

+0o0 dk
AL =
The appearance of the imaginary correction —i0 is caused by the convergence of the path
integral (4.4) [18].
Integrating over @ we reduce the rhs of (4.23) to the form

+00 k 1

—B2V[0, -
,3 [ e(X)]/ 4”\/¢m

+00
= 4i_ ce(X)] / dk ag + k2 di(kk) , (4.24)
where 8 (k) is a phase shift defined in equation (4.15). We discuss this expression in section 7
in connection with the correction to the soliton mass caused by Gaussian fluctuations.

For the analysis of the renormalizability of the sine-Gordon model, the momentum integral
in the effective Lagrangian § L[ (x)] should be taken in a Lorentz covariant form (4.23)
and regularized in a covariant way. Making a Wick rotation @ — iw and passing to Euclidean
momentum space, we define the integral over w and k in (4.23) as [2]

f+oo dk /+°° dw 1 1 I A2 4.25)
=—In(—), )
2mi oy — ) — W +k2—i0  4x o

where A is an Euclidean cut-off [2]. The effective Lagrangian, induced by Gaussian
fluctuations around a soliton solution, is equal to

S Legr[Vee (x)]

a [ B
8 Legt[Vce(¥)] = = [ — 111( )} (cos Bice(x) — 1). (4.26)
ﬂ 8w (&)

The Lagrangian (4.26) has the distinct form of the correction, caused by quantum fluctuations
around the trivial vacuum calculated to first orders in ao(A?) and 2.

The total Lagrangian, accounting for Gaussian fluctuations around the soliton solution,
amounts to

2
Lefr(x) = —3 Ve (x) 0" Dee (x) + —2 [1 - ﬁ—l ( )} (cos Bice(x) — 1). (4.27)
B 8 o

This coincides with equation (6.7) of [2].
As has been shown in [2], the dependence of the effective Lagrangian (4.27) on the cut-off
A can be removed by renormalization with the renormalization constant (1.4)

2 2 2 2
o [1 - ﬁ—ln (A—ﬂ =a,(MHZ, [1 - ﬁ—ln (A—>]
8 Qo 8 o, (M*)Z,
_ 5 ﬂ2 2 132 A2
oo [1e Ln(2) - B ()]

2 2
= a,(M?) |:1+ﬂ—ln (“’(M ))} (4.28)
8

M?2

where we have kept terms of order O (8?) in the B2-expansion of the renormalization constant
(1.4). This gives the effective Lagrangian

r(M2)|:
B*

2 2
1+ 82 1n<“’(M )>] (cos B (x) — 1), (4.29)

Legr(x) = 53 Ve (x) 9" Dep (x) + S e
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We can replace the coupling constant «, (M?) by the physical coupling constant app, related
to a, (M?) by (2.16)

2 2
apn = 0t (M?) |:1+'B—ln (“’(M ))] (4.30)

8 M?

where we have kept terms of order O (82) only. Substituting (4.30) into (4.29) we get
") 1 M Oph
Ly (x) = zauﬁcg(x)a Dee(x) + F(COS B (x) —1). 4.31)

The effective Lagrangian (4.31) coincides with the Lagrangian, renormalized by the quantum
fluctuations around the trivial vacuum (2.18), and corroborates the result obtained in [2].

We would like to emphasize that analysing the renormalization of the sine-Gordon model,
caused by Gaussian fluctuations around a soliton, one can see that Gaussian fluctuations
are perturbative fluctuations of order O(«, (M 2)g?) valid for B2 « 8w, which cannot be
responsible for non-perturbative contributions to the soliton mass at 8> = 8.

5. Renormalization of the soliton mass by Gaussian fluctuations in continuous
space—time

Using the effective Lagrangian equation (4.24) one can calculate the soliton mass corrected
by quantum fluctuations. It reads

8
\/3_0+AMS, ;.1

s =

where AM; is defined by

00 ds (k)

T (5.2)

A%=—/ mw@mmWn=/

—00

This corresponds to the correction to the soliton mass, induced by Gaussian fluctuations,
without a surface term — /oo /7 [19, 20].
In the Lorentz covariant form the correction to the soliton mass reads

+00
AMz—/ dr' 8 Lo [Per (x)]
—00

=/ i d_“’/ Ll [In(—w?) — In(ag — @* + k%]

oo 2mi J_oo 2 K2+ oy

0 gk [ dw 1
o 21 ) 2miag— @ +K2—i0

= -2,/ (53)

where we have taken the effective Lagrangian defined by (4.22) and integrated over w by parts.
Using the result of the calculation of the integral (4.25) we get the following expression for
the soliton mass corrected by Gaussian fluctuations

8y/arg(A2) me>[ A2 }
B2 2z ap(A?)

M;

(5.4)
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The removal of the dependence on the cut-off A should be carried out within the
renormalization procedure.

Replacing a(A?) in (5.4) by o, (M?) Z, (B>, M?; A?), where the renormalization constant
Z1(B8%, M?; A?) is defined by equation (1.4), we get

8V, (MNZ1 Ve (M)Zi A?
g2 o= “[a,uw)zl]

M, =

(5.5)

The renormalization constant Z; should be expanded in power of B? to order O(B?). This

gives
,32 AZ

Substituting (5.6) into (5.5) and keeping only the leading terms in % we get

8 B% . [a.(M?)
MAZE\/OQ(MZ) |:1+ng< e )i| (57)

Using equation (4.30) we can rewrite the ths of (5.7) in terms of oy,

8./
M, = \f/}?. (5.8)

The mass of a soliton M, depends on the physical coupling constant ap,. Hence, the
contribution of Gaussian fluctuations around a soliton solution is absorbed by the renormalized
coupling constant oy, and no singularities of the sine-Gordon model appear at B% = 8.

This result confirms the assertion by Zamolodchikov and Zamolodchikov [14], that the
singularity of the sine-Gordon model induced by the finite correction —  /&;n/7 to the soliton
mass, caused by Gaussian fluctuations around a soliton solution, is completely due to the
regularization and renormalization procedure. This has been corroborated in [2].

We have obtained that the soliton mass M; does not depend on the normalization scale
M. This testifies that the soliton mass M, is an observable quantity.

6. Renormalization of soliton mass by Gaussian fluctuations: space-time
discretization technique

Usually the correction to the soliton mass is investigated in the literature by a discretization
procedure [19] (see also [20]). The soliton with Gaussian fluctuations is embedded into a
spatial box with a finite volume L and various boundary conditions for Gaussian fluctuations
at x = £L/2. In such a discretization approach time is also discrete with a period
T, which finally has to be taken in the limit 7 — oo. The frequency spectrum is
Wy, =2mm/T withm = 0, =1, . ... For various boundary conditions spectra of the momenta
of Gaussian fluctuations around a soliton and of Klein—-Gordon quanta, corresponding to
vacuum fluctuations, are adduced in table 1. According to table 1, for various boundary
conditions the corrections to the soliton mass are given by

AMP = Jim lim 5 {Zm;@ 2o =@} 1) = n (o0 = ], + 7))

[e¢]

+ 3 [In(~wf +A%L)) —In (a0 — )] | .

m=—00
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Table 1. The spectra of the momenta of Gaussian fluctuations around a soliton and the Klein—
Gordon quanta. The modes, denoted by (x) are due to the bound state.

Periodic BC
Soliton sector Vacuum sector
koL +6(k,) = 2nm qnL = 2nm
n=0:(x) <~ 1x — n=0:q0=0
n=1:q1=%+0(L7? <« 2x — n=1:q =%
. <~ 2X —
ds (k d
ZZC:I_)I%OOKO(L*Z)%<L+$) Zoolﬁfzn 2L
Anti-periodic BC
knL +8(ky) = 2n — )x gL =2n - )
n=1:(x)+k =0 <~ (0+Dx— n=l:q1=7
<« 2X —>
k ds(k d
Zr?O:2 - f%ﬂg(LfZ) 37 (L + %) 2212 g fg %L
Rigid walls
koL +8(k,) = nm gnL = nm
n=1:() <~ 1Ix - n=1:q1=7
<~ Ix —
k d
Yota = 7, L +O(L~ z)n(Ldea()) Zzozz—’f% FL
1 oo o
(ap) __ - 2 2
AM™ = lLrI;oLlLoc_Tiz Z Zln ao—a) +k)—ln(a0—wm+qn)]
=—00 n=2
oo
+ Z [In (—oy, + A*(L)) +1n (ag — ) — 2In (29 — oy, +q7)] {
m=—o00
1 [0¢] oo
(rw) _ _ _
AM Jim lim_ _2iT{ 37 [in(eo — wp +k7) —In (0 — @} +4;)]
m=—00 n=2
o0
2 2 2 2
+ Y [In(—wp + AX(L)) —In (a0 — 0} +47)] { - 6.1)
m=—o00

where A?(L) ~ apge VL at L — oo, and the abbreviations (p), (ap) and (rw) mean periodic,
anti-periodic boundary conditions and rigid walls, respectively.
For the summation over m, we use the formula, derived by Dolan and Jackiw [21]

+oo 1 — e—laT
> [In(-w}, +a®) = In(—wp, +b?)] =i(a — H)T +21n (W) . (6.2)

m=—0o0

Taking the limit 7 — oo we arrive at the expression
Yol (Vo +k2 — Jag+g2),  periodic BC

+ lim { >, (\/ao +k2 — \Jog + c],%) anti-periodic BC (6.3)
% oo (\/0‘0 +k2 — \/Olo + q,%) rigid walls,

where BC is the abbreviation of boundary conditions.
The aim of our analysis of AM, within the discretization procedure is to show that the
discretization procedure gives A M; in the form of (5.3).
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The subsequent analysis of A M, we carry out for periodic boundary conditions only. One
can show that for anti-periodic boundary conditions and rigid walls the result is the same.

For the next transformation of the rhs of (6.3), we propose to use the following integral
representation:

2 dw ap + k> — w* —i0
\/a0+k3—\/ao+q3=/ —,ln|: 0 ; — :| 6.4)
oo 2mi ap+q; —w*—1i0
This gives after interchanging the integration over w with the summation over n
N 2 2 .
4/ +k; —w” —10
AMS(P) / — lim lim In A — |, (6.5)
271 L—00 N—oo £ o +qr—w? —i0

with mode-counting regularization procedure [20] apphed. Passing to the continuous
momentum representation [20] and using the spectra of the momenta of Gaussian fluctuations
and the Klein—Gordon fluctuations (the vacuum fluctuations) adduced in table 1 we transcribe
the rhs of (6.5) into the form

«/ kv dn(k
AMs(p) / — lim lim [/ dk ’Zii ) In(og + k> — @* — i0)
ky

271 L—00 N—00

4qN d
- / dg d(") In(ao + ¢ — w? —10)}

a/ kv dk dé(k
[ —— lim lim / — | L+ L
2mi L>coN—oo | Jp,  2m dk

2 2 . - dk 2 2 .
X In(eg + k“ — 0™ —10) — L — In(eg + k“ — 0 —10) |, (6.6)
q1 27
where the limits are equal to (see table 1)
T 3(gn) Vo
ki = —, ky =qn — w ZCIN——O,
2 _ 27N ’
q1 = L ) gNn = L .
Rearranging the limits of integrations we get
,/_ v dk ds(k
AM® = / — lim lim / —Ll (o + k> — * — i0)
: 271 L—00 N—>oo 7/L 2w dk
2m/L dk
+/ 9 im L/ — In(a + k* — ©* —i0)
oo 2mil—co Joyo 2w
o d a dk
—/ =2 fim Iim L/ = In(ay + K — 0 — i0)
—0o 271 L>00o N>oco kn 2
4/ dk dé(k
= / / ()l(0+k2—a) —i0)
27i L—>oo x/L 27 dk

+00 dw 2m/L dk
+/ —,nmL/ — In(ap + k> — w? — i0)
oo 2miL—oo Jopo 2w

—/ 22 fim lim Lz—qun(ao+k*2—a)2—iO). (6.8)
JT

oo 271 L—oo N—oo

For the last term we have applied the mean value theorem with gy — §(gn)/L < k* < gn.
Since the difference ky — gy = §(gn)/L = /ao/m N is of order O (1/N), this term vanishes
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in the limit N — 00.” As a result we get

dk ds(k
amp = 0 / m [ S ek - o )
2711L%oo

7/L 27[ dk
dw 2r/L
+f — lim L/ — In(ap + k> — »* — i0). (6.9)
oo 2miLl—oo  Joyo 27

Taking the limit L — oo and applying to the last term the mean value theorem we arrive at
the expression

— +00 4
AM®P — _ﬂ+ —w.111(010—a)2 —10)
s 2 o 4

+o g dk ds(k
+/ do [T dE) | o+ k2 — o — i0), (6.10)
oo 2miJy 2w dk

which we transcribe into the form

w2 4o [ dk 18k o g
AM® = ‘/— / @ [TARBE) o)+ / 22 In(ae — o — i0)

27i o 2m dk oo 4mi
fm do / dk d3(k) —[In(at + k> i0) — In(—w? — i0)] (6.11)
— — 1 n(— — 1 . .
wi)y 2r dk e o @

The next steps of the reduction of the rhs of (6.11) to the form (5.3) are rather straightforward.
First, one can easily shows that

4o [ dk d§(k) % de ,
— " In(—a? —i0) + 1 In(e — o —i0)

27 27 dk oo 4mi
+00
do J&@
= / 22 (g — w? — i0) — In(—w? — i0)] = Y20 6.12)
oo 4mi 2

and, second, integrating over w by parts the last integral in (6.11) can be reduced to the form

+00 dk +00 d l
AM<P>_—2¢—/ / @ _ (6.13)

27 g — @? + k2 — 10

Thus, we have shown that the correction to the soliton mass, induced by Gaussian fluctuations
around a soliton and calculated by means of the discretization procedure, agrees fully with
that we have obtained in continuous space—time (5.3).

Hence, the renormalization of the soliton mass, caused by Gaussian fluctuations calculated
within the space—time discretization technique, coincides with the renormalization of the
soliton mass in continuous space—time. We would like to emphasize that the obtained result
(6.13) does not depend on the boundary conditions.

The calculation of the functional determinant within the discretization procedure has
confirmed the absence of the correction —,/og/7. This agrees with our assertion that such
a correction does not appear due to Gaussian fluctuations around a soliton, corresponding to
quantum fluctuations to first orders in ao(A?) and 2.

The reduction of AM, s(p) of equation (6.1) to expression (5.3) can be carried out directly.
First, summing over n within the mode-counting regularization procedure and taking the limit

7 We would like to emphasize that exactly the term of this kind leads to the contribution of the finite surface term
— /oo /7 in a regularization procedure using expressions (6.3) without turning to the integral representation (6.4).
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L — oo we arrive from AMA@ of equation (6.1) at

1 = .. (1
AM(p) _Th_?;oﬁ _Z_leLn;o{E[ln( a)m+A (L)) (Olo—a),zn)]
N
+ngnDo > [In (ato +k%— a),zn) —In (o +q2 — a),zn)]}
1 e 1
. . 2 2 2
= Jim 7 3 Jim {E[m (—o? + AX(L)) — In (o0 — )]
. dn(k) 2 2 _/qN dn(q) 2 2
+A}1_r)noo[/kl dk P (ozo+k a)m) ; dg i ln(a0+q a)m)
I G B
:TILH;OE X_:OOLIEEO{E[IH( W + A (L)) In (ao—wrzn)]
k 27/L
+ lim [/N%MI (0+k2—a))+L/ %ln(ao+k2—w§1)
N—o00 7/L 27'[ dk /L 27-[
N dk
—L/kN Eln(ao—wfn+k2)j|}
1
:TILH;OE :Z_ Lli_)ngo{i[ln (—a),zn+A2(L))—ln (ao—a),zn)]
27 /L
+/ %Ml (a0 +k2—a))+L/ %ln(a0+k2—w,2n)}
7/L 2 dk 7/L 2

(1

5 [In(—w}) —In(ao — wp,)]
+/ dk dsk) | (O+k2_wfn)+%ln(ao—wﬁ1)}
0

 Q—“— dk ds (k) L 1 i

o ak Mokt + o (e, 6.14

m;oo {/0 27 dk ( %o wm) ) n ( a)m)} ( )
Now we use the integral representation 5 and get

dk 2. /aq
AMép):ThféoE Z / 2 + 42 [ (70m) —In 0+ — )
+00
— lim / d_a)dm(a)) ® dk 2. /g

w iT do Jy 2may+k?

=/+oo d“’/ dk 2 [In(—w?) — In(ag + k2 — @?)]

2mi o og + k2
+00 +00
- 2@ / dw % 1 .
27i | o 27 g — @ + k2 — i0

For the other boundary conditions we get the same result.

Thus, we have shown that the discretized version of the correction to the soliton mass
reduces to the continuum result if one transcribes first the sum over the quantum number n
of the momenta of Gaussian and vacuum fluctuations into the corresponding integral over the
momentum k.

Il
=
g8
ﬁlH

i
8M
e e,

I
g
|

[In(—w?) — In(ag + k> — »?)]

T—o0

(6.15)
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7. Renormalization of the two-point Green function in the massive sine-Gordon model

In this section, we show that the renormalization procedure of the two-point Green function
in the sine-Gordon model, developed above, can be applied to the renormalization of the
two-point Green function in the massive sine-Gordon model (the MSG model) [12, 23-34].
The bare Lagrangian of the MSG model is [12]

L(x) = aw(x)a“ﬁ(x) - Emo(Az)ﬂ (x) +

"/(3 )(cos BY(x) — 1), (7.1

where m(A?) is the bare mass of the free sine-Gordon quanta. The renormalized Lagrangian
reads

L(x) = aw<x>a“z>‘(x> ! 2<M2>19(>+ 53 )(COSﬂﬁ(x)—l)
- %m?(M%(zm — D) +(Z = 1) ’53 )<cosﬂz9(x> -1
:%Buﬁ(x)aﬂz?(x)—%mef(Mz)z?Z(x)+Zl o (M )(cosﬂz?(x) D, (7.2)

where Z; = Z, (o, (M?), B, M?; A?) is defined by (1.4). It relates the renormalized coupling
constant «, (M?) to the bare coupling constant ®o(A?) through the relation (1.3). Then,
Zn = Zm(a,(M?), ﬂz, M?; A?) is the renormalization constant of the mass of the MSG
model field

m,(M?) = Z,,'* (e (M?), B2, M*; A*)mo(A?). (7.3)
Similar to the sine-Gordon model, we keep the coupling constant 2 unrenormalizable.

For the analysis of the renormalizability of the MSG model with respect to quantum
fluctuations around the trivial vacuum, we expand the Lagrangian (7.2) in powers of ¥ (x).
This gives

L(x) = 3[3,0(x)0" D (x) — mH (M) (x)] + Ling (x), (7.4)

where /i (M?) = m*(M?) + o, (M?) is the effective mass of the sine-Gordon quanta, Lin(x)
describes self-interactions of the MSG model field

Lin(x) = —%mf(szzm — 9% (x) + a,(M?) Z %ﬁz(”‘”ﬁz"(x)
+(Z1 = ey MZ)Z @ ), B9 (). (.5)

It is seen that the parameter 71, (M?) has the meaning of a mass of free quanta of the MSG
model field ¥ (x). The causal two-point Green function of free MSG model quanta with mass
i, (M?) is defined by

_1AF(x m2(M2)) (0]T(®(x)?(0))]0) = [ anA mz(Mf) ixkz 0" (7.6)
At x = 0 the Green function —iA ¢ (0; mf(Mz)) is equal to [2]
_s 1 A?
—1AF( (M )) e —1In [W} , 7.7)

where A is a cut-off in the Euclidean two-dimensional momentum space.
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The calculation of the correction to the two-point Green function in the MSG model to
first order in &, (M?) and to all orders in A2 runs parallel to that by (2.10). The two-point
Green function reads

—iAG) = —iA(x, P (M) + i (M?) [1 — Ziexp {%ﬁziAF(O, m%(Mz))”
x / Ey[—iAr(x —y, m(MD))|[—iAp(—y, i} (M?))]

+(—)(Zyy — DmZ (M) f dy[—iAr(x — y, mE (M) |[-iAr(—y, 2 (MP)].

(7.8)
In the momentum representation, this expression takes the form
. . ~ B2/87 .
% (=1) (= . 2 i} (M?) (=1)
—iA(p) = + (M= (= .
A= G0 — 2 Rz — 2 M M (M) — p?
(=1) . 20002 (=)
———(-)(Z, — 1 M) ———. 7.9
7 — 7 v (7.9)
The two last terms define the correction to the mass of the MSG model field

m}(M?)
M2

B /8
sm>(M*) = —a,(M?) [1 —( ) }+ (Zn — DmA(M?).  (7.10)
Thus, for the two-point Green function, calculated to first order in o, (M?) and to all orders in
B2, we get
(—1) (—1)

—iA(p) = = = , (7.11)
m2(M?) + m2(M?) — p? méh - p?

where my, the physical mass of the MSG model quanta, is determined by

m2(M?*) + o, (M?)
MZ

B /87
may, = m}(M?) — e, (M?) [1 - ( ) } +(Zn = Dmy(M?)

+(Zy — Ym*(M?). (7.12)

m2(M?) + o, (M%) \ /"
M?

=m}(M?) +a,(M?) (

Since the first two terms do not depend on the cut-off A, the last term in (7.12) should
vanish. This means that the renormalization constant (Z,, — 1) is of order O (a2(M?)), i.e.
(Zn — m?(M?) = 0 to first order in o, (M?) and to all orders in B%. Thus, the squared
physical mass of the MSG model field is

20072 23\ B7/87
m2(M?) + o, (M )) . .

my, = m;(M?) +a,(M?) ( =77

In the soft-boson limit, when m?(M?) — 0, the physical mass of the MSG model field
coincides with (2.16).

This agrees with the assertion that the sine-Gordon model is not infrared singular [2] and
testifies that the operator m3¥%(x) is soft. That is in agreement with the results obtained by
Amit et al [12].

For finite m?(M?) and in the perturbative regime m?(M?) > «,(M?) the physical mass
of the MSG model field is equal to
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201024\ B /87
m, (M~)
e ) , (7.14)
where we have kept only the leading terms in o, (M?) expansion.

Calculating the second-order correction to the two-point Green function one can show
that the renormalization constant (Z,, — 1) vanishes. This implies that the mass parameter
mo(A2) is unrenormalizable, i.e. mo(A2) = myp. In this case, the physical mass of the MSG

model field takes the form

ma, = m}(M?) + o, (M?) (

m2 B /87
my, = mg +a, (M) (#) : (7.15)

Since the physical mass of the MSG model field cannot depend on the normalization scale,
we have to set

R mé /32/87r 5 M2 ﬁz/Sn
aph = O[r(M ) W —> O[r(M ) = Olph W . (716)
0

It is seen that setting the normalization scale M = m the renormalized coupling constant
a, (m}) coincides with the physical one, i.e. a, (m}) = aph.

The Gell-Mann—Low function, calculated for the coupling constant o, (M?) defined in
(7.16), is equal to

doe, (M?) _ NN 2 2
MW = B(a,(M"), B7) = Ear(M ). (7.17)

The Callan—Symanzik equation for the two-point Green function of the MSG model field reads
a 0 1 d
2 2 2 2
— 5 (MY ————— — —mE—
[p ap2 PP M5y T 2
where following [12] we have denoted §(8%) = (8% — 87)/8m. For the derivation of this
equation we have used

+ 1} A(p* o, (M?), B2 m3) =0,  (7.18)

F(0, p; a,(M?), B?) = —mzi+2a (M?)—
I Oom2 T T da, (M)

Setting A(pz; o, (M?), ,32, m%) = D(pz; o, (M?), ,32, m(z))/p2 and introducing dimensionless
variables 1 = pzmé/M“, @, = o, (M?)/M? we get

) A(p; (M), B, mf).  (7.19)

[ri—%( 2)~i} Dt;a) =0 (7.20)
o1 pragg |PEe =0 '

This agrees well with the renormalization group equation obtained by Amit et al [12], where
28(B?)a is the Gell-Mann—Low function, calculated to first order in & and to all orders in 82.

According to the general theory of partial differential equations of first order [15], the
solution of (7.20) is an arbitrary function of the integration constant

C = ar¥®", (7.21)
which is the solution of the characteristic differential equation
dt da
g (7.22)
t —28(BY)a

Hence, the Fourier transform of the two-point Green function of the sine-Gordon field is

equal to
2 28(8%)
- 1 opn [ M? 565 pzm2
A(p? o, B2om2) = —=D | 2 — 0 . 7.23
(p %, 0) p? |:”l(2) ”1(2) M4 ( )
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Making the renormalization at M? = m% we get

- 1 e (p?)
A(p*; apn, B2, m) = — D | —5— |, 7.24
(P ph :3 0) p2 m% ( )
where, in analogy with our analysis in section 3, we have introduced the running coupling
constant o, (p?)

pz 28(8%)
o (p?) = aph (—2) : (7.25)
my
For §(8%) < 0, i.e. B> < 8m, the MSG model with quantum fluctuations around a trivial
vacuum, calculated to first order in e, (M?) and to all orders in B2, is an asymptotically free
theory for p?> — oo. In turn for §(8%) > 0, i.e. B2 > 8m, the running coupling constant
a,(p?) grows with p?. Of course, due to a perturbative derivation of the Gell-Mann-Low
function (7.17) and the Callan—-Symanzik equation (7.18), the running coupling constant
a,(p?) cannot grow to infinity. The allowed region for momenta p? is restricted by the
inequality o, (p?) < m%. This gives

m2 1/28(8%)
pr < m} <a_0) . (7.26)
ph

Thus, we have shown that our results on the renormalization of the massive sine-Gordon
model, carried out for the two-point Green function, agree well with those obtained by Amit
etal [12].

8. Conclusion

We have investigated the renormalizability of the sine-Gordon model. We have analysed the
renormalizability of the two-point Green function to second order in « and to all orders in 5.
We have shown that the divergences appearing in the sine-Gordon model can be removed by
the renormalization of the dimensional coupling constant cig(A?). We recall that the coupling
constant 8 is not renormalizable. This agrees well with a possible interpretation of the
coupling constant 82 as & [1, 22]. The perturbation theory is developed with respect to the
renormalized dimensional coupling constant a,(M?) depending on the normalization scale
M and the dimensionless coupling constant 82. Quantum fluctuations relative to the trivial
vacuum calculated to first order in o, (M?) and to arbitrary order in 82 form a physical coupling
constant ayy, after the removal of divergences. The physical coupling constant oy, is finite and
does not depend on the normalization scale M. We have argued that the total renormalized
two-point Green function depends on the physical coupling constant oy, only. In order to
illustrate this assertion (i) we have calculated the correction to the two-point Green function to
second order in a, (M?) and to all orders in 82 and (ii) we have solved the Callan—-Symanzik
equation for the two-point Green function with the Gell-Mann-Low function, defined to all
orders in o, (M?) and 2. We have found that the two-point Green function of the sine-
Gordon field depends on the running coupling constant o, (p?) = apn(p? /otph)ﬂz/ 87 where
B* = B%/(1 + B%/8m) < 1 for any B>

In addition to the analysis of the renormalizability of the sine-Gordon model with respect
to quantum fluctuations relative to the trivial vacuum, we have analysed the renormalizability
of the sine-Gordon model with respect to quantum fluctuations around a soliton. Following
Dashen et al [9, 10] and Faddeev and Korepin [11] we have taken into account only Gaussian
fluctuations.

For the calculation of the effective Lagrangian, induced by Gaussian fluctuations, we
have used the path-integral approach and integrated over the field ¢(x), fluctuating around a
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soliton. This has allowed us to express the effective Lagrangian in terms of the functional
determinant. For the calculation of the contribution of the functional determinant we have used
the eigenfunctions and eigenvalues of the differential operator, describing the evolution of the
field ¢(x). We have shown that the renormalized effective Lagrangian, induced by Gaussian
fluctuations around a soliton, coincides completely with the renormalized Lagrangian of the
sine-Gordon model, caused by quantum fluctuations around the trivial vacuum to first order
in a9 and to second order in B2. After the removal of divergences the soliton mass is equal
to the mass of a soliton, calculated without quantum corrections, up to the replacement
ag — apy. This implies that Gaussian fluctuations around a soliton do not produce any
quantum corrections to the soliton mass. Hence, no non-perturbative singularities of the
sine-Gordon model at 8 = 87 can be induced by Gaussian fluctuations around a soliton.
For the confirmation of our results, obtained in continuous space—time, we have calculated
the functional determinant caused by Gaussian fluctuations around a soliton within the
discretization procedure with periodic and anti-periodic boundary conditions and rigid walls.
‘We have shown that the result of the calculation of the functional determinant (i) coincides with
that obtained in continuous space—time and (ii) does not depend on the boundary conditions.
Finally, we have analysed the renormalization of the two-point Green function of the
massive sine-Gordon model. We have shown that the mass operator méz?z(x) is soft. In the
infrared limit mo — O the physical mass of the massive sine-Gordon model quanta reduces
to our result (2.16). For m% > «,(M?) we have shown that the mass parameter my is
unrenormalizable. The physical coupling constant «,, has been calculated to first order in
o, (M?) and to all orders in 82. This has allowed us to calculate the Gell-Mann-Low function
and to derive the Callan—Symanzik equation for the two-point Green function. We have shown
that the Callan—Symanzik equation reduces to the form used by Amit et al [12] to the same order
in perturbation theory. Solving this equation we have calculated the running coupling constant
and found that for 8% < 87 the massive sine-Gordon model with quantum fluctuations around
a trivial vacuum, calculated to first order in o, (M?) and to all orders in 82, is asymptotically
free for infinitely large momenta. In turn, for 8> > 87 the running coupling constant a, (p?)
grows with p2. But since o, (p?) has been calculated perturbatively for m§ > «,(M?), the
running coupling constant should obey the constraint m%) > a,(p?). This restricts the region

of the allowed momenta p? < m2(m2 /o) with §(82) = (8> — 87)/87 [12]. All
these results do not contradict those obtained by Amit et al [12].

The renormalization of the sine-Gordon model, which was carried out before 1979 in
[23-26], has been discussed perfectly well by Amit et al. After 1980, as has been pointed out
by Nandori et al [27], the main results on the renormalization of the sine-Gordon model in
two dimensions have been obtained in [28—34]. In these papers, the sine-Gordon model has
been investigated at finite temperature in connection with the XY model and the existence of
phase transitions. The Coleman fixed point at 8> = 87 has been recovered in our approach
[2] as well as in the present paper.

Unlike [12, 23-34], we would like to apply the results obtained in this paper to the
analysis of the FQHE [6, 7]. As has been shown in [22], the massive Thirring model, which
can describe one-dimensional edge fermions [6, 7], bosonises to the sine-Gordon model for
B% > 8m. According to [22], for B2 > 87 the sine-Gordon system produces mainly solitons,
which can play an important role in the FQHE [35].
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